【題目】為了考察甲、乙兩塊地小麥的長(zhǎng)勢(shì),分別從中抽取10株苗,測(cè)得苗高如下(單位:cm):甲:12,13,14,15,10,16,13,11,15,11;乙:11,16,17,14,13,19,6,8,10,16.要比較哪塊地小麥長(zhǎng)得比較整齊,我們應(yīng)選擇的統(tǒng)計(jì)量是( )

A. 中位數(shù)B. 平均數(shù)C. 眾數(shù)D. 方差

【答案】D

【解析】

根據(jù)題意,要比較甲、乙兩塊地小麥哪塊地小麥長(zhǎng)得比較整齊,需要比較它們的方差,故可得解.

由于方差反映了的是一組數(shù)據(jù)的波動(dòng)大小,

因此,要比較哪塊地小麥長(zhǎng)得比較整齊,我們應(yīng)選擇的統(tǒng)計(jì)量是方差.

故選D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在坐標(biāo)平面內(nèi)有下列三條直線:
①經(jīng)過點(diǎn)(0,2)且平行于x軸的直線;
②直線y=2x﹣8;
③經(jīng)過點(diǎn)(0,12)且平行于直線y=﹣2x的直線,
其中經(jīng)過點(diǎn)(5,2)但不經(jīng)過第三象限的直線共有(
A.0條
B.1條
C.2條
D.3條

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】化簡(jiǎn)(2a﹣3b)﹣3(4a﹣2b)結(jié)果為(
A.﹣10a﹣3b
B.﹣10a+3b
C.10a﹣9b
D.10a+9b

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=﹣(x12+3圖象的頂點(diǎn)坐標(biāo)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知a=5,│b│=8,且滿足ab<0,則ab的值為( )

A. 3 B. -3 C. -13 D. 13

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】去年“雙11”購(gòu)物節(jié)的快遞量暴增,某快遞公司要在街道旁設(shè)立一個(gè)派送還點(diǎn),向A,B兩居民區(qū)投送快遞,派送點(diǎn)應(yīng)該設(shè)在什么地方,才能使它到A,B的距離之和最短?快遞員根據(jù)實(shí)際情況,以街道為x軸,建立了如圖所示的平面直角坐標(biāo)系,測(cè)得坐標(biāo)A(﹣2,2)、B(6,4),則派送點(diǎn)的坐標(biāo)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)中,點(diǎn)Dy軸上,以D為圓心,作⊙Dx軸于點(diǎn)EF,交y軸于點(diǎn)B、G,點(diǎn)A上,連接ABx軸于點(diǎn)H,連接 AF并延長(zhǎng)到點(diǎn)C,使∠FBC=A

(1)判斷直線BC與⊙D的位置關(guān)系,并說明理由;

(2)求證:BE2=BH·AB

(3) 若點(diǎn)E坐標(biāo)為(-4,0),點(diǎn)B的坐標(biāo)為(0,-2),AB=8,求FA兩點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:b是最小的正整數(shù),且a、b滿足(c﹣5)2+|a+b|=0,請(qǐng)回答問題:

(1)請(qǐng)直接寫出a、b、c的值:a= , b= , c=
(2)a、b、c所對(duì)應(yīng)的點(diǎn)分別為A、B、C,開始在數(shù)軸上運(yùn)動(dòng),若點(diǎn)A以每秒2個(gè)單位長(zhǎng)度的速度向左運(yùn)動(dòng),同時(shí),點(diǎn)B和點(diǎn)C分別以每秒2個(gè)單位長(zhǎng)度和6個(gè)單位長(zhǎng)度的速度向右運(yùn)動(dòng),假設(shè)t秒鐘過后,若點(diǎn)B與點(diǎn)C之間的距離表示為BC,點(diǎn)A與點(diǎn)B之間的距離表示為AB.
請(qǐng)問:BC﹣AB的值是否隨著時(shí)間t的變化而改變?若變化,請(qǐng)說明理由;若不變,請(qǐng)求其值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:
(1)(a2﹣b2)﹣4(2a2﹣3b2
(2)3x2+[2x﹣(﹣5x2+2x)﹣2]﹣1.

查看答案和解析>>

同步練習(xí)冊(cè)答案