【題目】如圖,在ABCD中,AB=2BC,M是AB的中點,則∠CMD( 。
A.是銳角B.是直角
C.是鈍角D.度數(shù)不能確定
【答案】B
【解析】
根據(jù)平行四邊形ABCD中,AB=2BC,M是AB的中點,易得AD=AM=BM=BC,繼而證得DM,CM分別是∠ADC與∠BCD的角平分線,繼而證得結(jié)論.
證明:如圖,∵四邊形ABCD是平行四邊形,
∴AB=CD(平行四邊形對邊相等),
∵AB=2BC,M是AB的中點,
∴AD=BC=AM=BM,
∴∠ADM=∠AMD,∠BCM=∠BMC,
∵AB∥CD(平行四邊形對邊平行),
∴∠CDM=∠AMD,∠DCM=∠BMC,
∴∠ADM=∠CDM,∠BCM=∠DCM(兩直線平行,內(nèi)錯角相等),
∵AD∥BC,
∴∠ADC=∠BCD=180°,
∴∠CDM+∠DCM= ∠ADC+ ∠BCD=90°,
∴∠CMD=90°,即∠CMD是直角.
故選:B.
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,∠BAC=60°,AD平分∠BAC交邊BC于點D,分別過D作DE∥AC交邊AB于點E,DF∥AB交邊AC于點F.
(1)如圖1,試判斷四邊形AEDF的形狀,并說明理由;
(2)如圖2,若AD=4,點H,G分別在線段AE,AF上,且EH=AG=3,連接EG交AD于點M,連接FH交EG于點N.
(i)求ENEG的值;
(ii)將線段DM繞點D順時針旋轉(zhuǎn)60°得到線段DM′,求證:H,F,M′三點在同一條直線上
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,AB是⊙O的直徑,D為⊙O上一點,OD⊥AC,垂足為E,連接BD.
(1)求證:BD平分∠ABC;
(2) 當∠ODB=30°時,求證:BC=OD.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在圓O中,AB為直徑,EF為弦,連接AF,BE交于點P,且EF2=PFAF.
(1)求證:F為弧BE的中點;
(2)若tan∠BEF=,求cos∠ABE的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】圖1、圖2是兩張形狀、大小完全相同的方格紙,方格紙中的每個小正方形的邊長均為1,每個小正方形的頂點叫做格點.
(1)在圖1中畫出等腰直角三角形MON,使點N在格點上,且∠MON=90°;
(2)在圖2中以格點為頂點畫一個正方形ABCD,使正方形ABCD面積等于(1)中等腰直角三角形MON面積的4倍,并將正方形ABCD分割成以格點為頂點的四個全等的直角三角形和一個正方形,且正方形ABCD面積沒有剩余(畫出一種即可).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AB=AC,以AC為直徑的⊙O與BC交于點D,經(jīng)過點D的直線EF⊥AB于點E,與AC的延長線交于點F.
(1)直線EF是否為⊙O的切線?并證明你的結(jié)論.
(2)若AE=4,BE=1,試求cosA的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,己知二次函數(shù)的圖像與y軸交于點B(0, 4),與x軸交于點A(-1,0)和點D.
(1)求二次函數(shù)的解析式;
(2)求拋物線的頂點和點D的坐標;
(3)在拋物線上是否存在點P,使得△BOP的面積等于?如果存在,請求出點P的坐標?如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:△ABC內(nèi)接于⊙O,連接CO并延長交AB于點E,交⊙O于點D,滿足∠BEC=3∠ACD.
(1)如圖1,求證:AB=AC;
(2)如圖2,連接BD,點F為弧BD上一點,連接CF,弧CF=弧BD,過點A作AG⊥CD,垂足為點G,求證:CF+DG=CG;
(3)如圖3,在(2)的條件下,點H為AC上一點,分別連接DH,OH,OH⊥DH,過點C作CP⊥AC,交⊙O于點P,OH:CP=1: ,CF=12,連接PF,求PF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,對角線互相垂直的四邊形叫做垂美四邊形.
(1)概念理解:如圖2,在四邊形中,,,問四邊形是垂美四邊形嗎?請說明理由;
(2)性質(zhì)探究:如圖1,四邊形的對角線、交于點,.試證明:;
(3)解決問題:如圖3,分別以的直角邊和斜邊為邊向外作正方形和正方形,連結(jié)、、.已知,,求的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com