如圖,已知AB為⊙O的直徑,CD是弦,AB⊥CD于E,OF⊥AD于F,△OBD是等邊三角形。

(1)求證:OF∥BD;

(2)求證:△AFO≌△DEB;

(3)若BE=4cm,求陰影部分的面積。


(1)∵AB為⊙O的直徑,∴AD⊥BD。

又∵OF⊥AD,∴OF∥BD。

(2)∵AB⊥CD,∴!唷螪AB=∠BDC。

∵△OBD是等邊三角形,∴BD=OB=OA。

又∵∠AFO=∠DEB=90°,∴△AFO≌△DEB(AAS)。

【考點(diǎn)】垂徑定理,平行的性質(zhì),全等三角形的判定和性質(zhì),勾股定理,扇形面積的計(jì)算,轉(zhuǎn)換思想的應(yīng)用。


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:


已知,則函數(shù) 的圖象大致是【    】

A.    B.     C.    D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


 有三張正面分別寫(xiě)有數(shù)字﹣2,﹣1,1的卡片,它們的背面完全相同,將這三張卡片北背面朝上洗勻后隨機(jī)抽取一張,以其正面的數(shù)字作為x的值,不放回卡片洗勻,再?gòu)挠嘞碌膬蓮埧ㄆ须S機(jī)抽取一張,以其正面的數(shù)字作為y的值,兩次結(jié)果記為(x,y)。

(1)用樹(shù)狀圖或列表法表示(x,y)所有可能出現(xiàn)的結(jié)果;

(2)求使分式無(wú)意義的(x,y)出現(xiàn)的概率;

(3)化簡(jiǎn)分式,并求使分式的值為整數(shù)的(x,y)出現(xiàn)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


矩形、菱形、正方形都是平行四邊形,但它們都是有特殊條件的平行四邊形,正方形不僅是特殊的矩形,也是特殊的菱形.因此,我們可利用矩形、菱形的性質(zhì)來(lái)研究正方形的有關(guān)問(wèn)題.回答下列問(wèn)題:

1)將平行四邊形、矩形、菱形、正方形填入它們的包含關(guān)系的下圖中.

(2)要證明一個(gè)四邊形是正方形,可先證明四邊形是矩形,再證明這個(gè)矩形的_______相等;或者先證明四邊形是菱形,在證明這個(gè)菱形有一個(gè)角是________ .

(3)某同學(xué)根據(jù)菱形面積計(jì)算公式推導(dǎo)出對(duì)角線長(zhǎng)a的正方形面積是S=0.5a2,對(duì)此結(jié)論,你認(rèn)為是否正確?若正確,請(qǐng)說(shuō)明理由;若不正確,請(qǐng)舉出一個(gè)反例說(shuō)明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


在Rt△ABC中,∠A=90°,∠B=30°, AC=1,點(diǎn)O在BC上,以O(shè)為圓心作⊙O交BC于點(diǎn)M、N,⊙O與AB、AC相切,切點(diǎn)分別為D、E,則⊙O的半徑為         ;∠MND的度數(shù)為         。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


如圖,分別以Rt△ABC的斜兩條直角邊為邊向△ABC外作等邊△BCD和等邊△ACE, AD與BE交于點(diǎn)H,∠ACB=90°。

(1)求證:AD=BE;

(2)求∠AHE的度數(shù);

(3)若∠BAC=30°,BC=1,求DE的長(zhǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


 菱形ABCD中,∠ABC=450,點(diǎn)P是對(duì)角線BD上的任一點(diǎn),點(diǎn)P關(guān)于直線AB、AD、CD、BC的對(duì)稱點(diǎn)分別是點(diǎn)E、F、G、H, BE與DF相交于點(diǎn)M,DG與BH相交于點(diǎn)N,證明:四邊形BMDN是正方形。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


如圖,對(duì)稱軸為的拋物線軸相交于點(diǎn)、

(1).求拋物線的解析式,并求出頂點(diǎn)的坐標(biāo)

(2).連結(jié)AB,把AB所在的直線平移,使它經(jīng)過(guò)原點(diǎn)O,得到直線.點(diǎn)P是上一動(dòng)點(diǎn).設(shè)以點(diǎn)A、B、O、P為頂點(diǎn)的四邊形面積為S,點(diǎn)P的橫坐標(biāo)為,當(dāng)0<S≤18時(shí),求的取值范圍

(3).在(2)的條件下,當(dāng)取最大值時(shí),拋物線上是否存在點(diǎn),使△OP為直角三角形且OP為直角邊.若存在,直接寫(xiě)出點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


 如圖,在平面直角坐標(biāo)系中,拋物線經(jīng)過(guò)平移得到拋物線,其對(duì)稱軸與兩段拋物線所圍成的陰影部分的面積為【    】

   A.2         B.4         C.8          D.16

查看答案和解析>>

同步練習(xí)冊(cè)答案