【題目】菱形有一個內(nèi)角是120°,其中一條對角線長為9,則菱形的邊長為____________.
【答案】9 或
【解析】
如圖,根據(jù)題意得:∠BAC=120°,易得∠ABC=60°,所以△ABC為等邊三角形.如果AC=9,那么AB=9;如果BD=9,由菱形的性質(zhì)可得邊AB的長.
∵四邊形ABCD是菱形,
∴AD∥BC,∠ABD=∠CBD,OA=OC,OB=OD,AC⊥BD,AB=BC,
∵∠BAD=120°,
∴∠ABC=60°,
∴△ABC為等邊三角形,
如果AC=9,則AB=9,
如果BD=9,
則∠ABD=30°,OB=,
∴OA=AB,
在Rt△ABO中,∠AOB=90°,∴AB2=OA2+OB2,
即AB2=(AB)2 +()2,
∴AB=3,
綜上,菱形的邊長為9或3.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀:能夠成為直角三角形三條邊長的三個正整數(shù)a,b,c,稱為勾股數(shù).世界上第一次給出勾股數(shù)通解公式的是我國古代數(shù)學(xué)著作《九章算術(shù)》,其勾股數(shù)組公式為: 其中m>n>0,m,n是互質(zhì)的奇數(shù).
應(yīng)用:當(dāng)n=1時(shí),求有一邊長為5的直角三角形的另外兩條邊長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=﹣x+4的圖象與反比例函數(shù)y=(k≠0)的圖象交于A(1,a)、B(b,1)兩點(diǎn).
(1)求反比例函數(shù)的表達(dá)式;
(2)在x軸上找一點(diǎn)P,使PA+PB的值最小,求滿足條件的點(diǎn)P的坐標(biāo);
(3)在(2)的條件下,求△PAB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果點(diǎn)A(0,2)和點(diǎn)B(4,2)都在二次函數(shù)y=x2+bx+c的圖象上,那么此拋物線在直線_____的部分是上升的.(填具體某直線的某側(cè))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是正方形,點(diǎn)E是BC邊上的點(diǎn),∠AEF=90°,且EF交正方形外角的平分線CF于點(diǎn)F.
(1)如圖①,當(dāng)點(diǎn)E是BC邊上任一點(diǎn)(不與點(diǎn)B、C重合)時(shí),求證:AE=EF.
(2)如圖②當(dāng)點(diǎn)E是BC邊的延長線上一點(diǎn)時(shí),(1)中的結(jié)論還成立嗎? (填成立或者不成立).
(3)當(dāng)點(diǎn)E是BC邊上任一點(diǎn)(不與點(diǎn)B、C重合)時(shí),若已知AE=EF,那么∠AEF的度數(shù)是否發(fā)生變化?證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)a,b是任意兩個不等實(shí)數(shù),我們規(guī)定:滿足不等式a≤x≤b的實(shí)數(shù)x的所有取值的全體叫做閉區(qū)間,表示為[a,b].對于一個函數(shù),如果它的自變量x與函數(shù)值y滿足:當(dāng)m≤x≤n時(shí),有m≤y≤n,我們就稱此函數(shù)是閉區(qū)間[m,n]上的“閉函數(shù)”.如函數(shù)y=﹣x+4,當(dāng)x=1時(shí),y=3;當(dāng)x=3時(shí),y=1,即當(dāng)1≤x≤3時(shí),恒有1≤y≤3,所以說函數(shù)y=﹣x+4是閉區(qū)間[1,3]上的“閉函數(shù)”,同理函數(shù)y=x也是閉區(qū)間[1,3]上的“閉函數(shù)”.
(1)反比例函數(shù)y=是閉區(qū)間[1,2018]上的“閉函數(shù)”嗎?請判斷并說明理由;
(2)如果已知二次函數(shù)y=x2﹣4x+k是閉區(qū)間[2,t]上的“閉函數(shù)”,求k和t的值;
(3)如果(2)所述的二次函數(shù)的圖象交y軸于C點(diǎn),A為此二次函數(shù)圖象的頂點(diǎn),B為直線x=1上的一點(diǎn),當(dāng)△ABC為直角三角形時(shí),寫出點(diǎn)B的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,梯形ABCD中,AD∥BC,AD=CD,BC=AC,∠BAD=108°,則∠D=( 。
A. 144°B. 110°C. 100°D. 108°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊△ABC的邊長為2cm,點(diǎn)P從點(diǎn)A出發(fā),以1cm/s的速度沿AC向點(diǎn)C運(yùn)動,到達(dá)點(diǎn)C停止;同時(shí)點(diǎn)Q從點(diǎn)A出發(fā),以2cm/s的速度沿AB﹣BC向點(diǎn)C運(yùn)動,到達(dá)點(diǎn)C停止,設(shè)△APQ的面積為y(cm2),運(yùn)動時(shí)間為x(s),則下列最能反映y與x之間函數(shù)關(guān)系的圖象是( 。
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,小王在校園上的A處正面觀測一座教學(xué)樓墻上的大型標(biāo)牌,測得標(biāo)牌下端D處的仰角為30°,然后他正對大樓方向前進(jìn)5m到達(dá)B處,又測得該標(biāo)牌上端C處的仰角為45°.若該樓高為16.65m,小王的眼睛離地面1.65m,大型標(biāo)牌的上端與樓房的頂端平齊.求此標(biāo)牌上端與下端之間的距離(≈1.732,結(jié)果精確到0.1m).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com