【題目】如圖,在平面直角坐標系第一象限中,已知點A坐標為(1,0),點D坐標為(1,3),點G坐標為(1,1),動點E從點G出發(fā),以每秒1個單位長度的速度勻速向點D方向運動,與此同時,x軸上動點B從點A出發(fā),以相同的速度向右運動,兩動點運動時間為t(0<t<2),以AD、AB分別為邊作矩形ABCD,過點E作雙曲線交線段BC于點F,作CD中點M,連接BE、EF、EM、FM.
(1)當t=1時,求點F的坐標.
(2)若BE平分∠AEF,則t的值為多少?
(3)若∠EMF為直角,則t的值為多少?
【答案】(1)點F(2,1);(2)t=;(3)t=4﹣4
【解析】
(1)t=1時,可以求出E點坐標(1,2),并算出經過它的雙曲線解析式 ,F點和B點的橫坐標相同,把B點橫坐標x=2代入就可算出F點坐標.
(2)因為AEBC,所以,又因為EB平分,所以, EF=BF, 在通過坐標用含t的代數(shù)式表示EF和BF的長,建立等量關系就可以算出t的值.
(3)通過坐標用含t的代數(shù)式分別表示出EM,MF,EF的長,因為是直角,所以是直角三角形,運用勾股定理建立等量關系,算出t即可.
(1)t=1時,E點坐標為(1,2),F點橫坐標x=2,
設經過E的雙曲線為,
把E點坐標代入得:,
再把F點橫坐標x=2代入,
得y=1,所以F點坐標為(2,1).
(2)因為A點坐標為(1,0),G點坐標為(1,1),
則t秒后,E點坐標可以表示為(1,1+t),
B點坐標可以表示為(1+t,0),
設經過E點雙曲線為:,
把E點坐標代入得:,
F點也在雙曲線上,F點橫坐標和B相同,
把x=1+t代入函數(shù)得,
y=1,所以F點坐標為(1+t,1),
因為AEBC,所以,
又EB平分,所以, EF=BF,
即 ,
解得t=.
(3)因為D點坐標為(1,3),M為DC中點,則M點坐標為(1,),
又是直角,所以是直角三角形,
由勾股定理,
得: ,
解得t=.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點的坐標為(0,4),線段的位置如圖所示,其中點的坐標為(,),點的坐標為(3,).
(1)將線段平移得到線段,其中點的對應點為,點的對應點為點.
①點平移到點的過程可以是:先向 平移 個單位長度,再向 平移 個單位長度;
②點的坐標為 .
(2)在(1)的條件下,若點的坐標為(4,0),連接,畫出圖形并求的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,D、E分別是AC、AB上的點,BD與CE交于點O.給出下列三個條件:
①∠EBO=∠DCO;②∠BEO=∠CDO;③BE=CD.
(1)上述三個條件中,哪兩個條件 可判定△ABC是等腰三角形(用序號寫出所有情形);
(2)選擇第(1)小題中的一種情形,證明△ABC是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在初中階段的函數(shù)學習中,我們經歷了“確定函數(shù)的表達式﹣﹣利用函數(shù)圖象研究其性質一運用函數(shù)解決問題“的學習過程.在畫函數(shù)圖象時,我們通過描點或平移的方法畫出了所學的函數(shù)圖象.同時,我們也學習了絕對值的意義|a|=.
結合上面經歷的學習過程,現(xiàn)在來解決下面的問題:在函數(shù)y=|kx﹣1|+b中,當x=1時,y=3,當x=0時,y=4.
(1)求這個函數(shù)的表達式;
(2)在給出的平面直角坐標系中,請用你喜歡的方法畫出這個函數(shù)的圖象;
(3)已知函數(shù)y=的圖象如圖所示,結合你所畫的函數(shù)圖象,直接寫出不等式|kx﹣1|+b≥的解集.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】蘇州太湖養(yǎng)殖場計劃養(yǎng)殖蟹和貝類產品,這兩個品種的種苗的總投放量只有50噸,根據(jù)經驗測算,這兩個品種的種苗每投放一噸的先期投資,養(yǎng)殖期間的投資以及產值如下表(單位:萬元/噸)
品種 | 先期投資 | 養(yǎng)殖期間投資 | 產值 |
貝類產品 | 0.9 | 0.3 | 0.33 |
蟹產品 | 0.4 | 1 | 2 |
養(yǎng)殖場受經濟條件的影響,先期投資不超過36萬元,養(yǎng)殖期間的投資不超過29萬元,設貝類的種苗投放量為x噸,
(1)求x的取值范圍;
(2)設這兩個品種產出后的總產值為y(萬元),試寫出y與x之間的函數(shù)關系式,并求出當x等于多少時,y有最大值?最大值是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學為促進課堂教學,提高教學質量,對七年級學生進行了一次“你最喜歡的課堂教學方式”的問卷調查.根據(jù)收回的問卷,學校繪制了如下圖表,請你根據(jù)圖表中提供的信息,解答下列問題.
編號 | 教學方式 | 最喜歡的頻數(shù) | 頻率 |
1 | 教師講,學生聽 | 20 | 0.10 |
2 | 教師提出問題,學生探索思考 | ||
3 | 學生自行閱讀教材,獨立思考 | 30 | |
4 | 分組討論,解決問題 | 0.25 |
(1)收回的問卷份數(shù)為 ,把條形統(tǒng)計圖補充完整;
(2)扇形統(tǒng)計圖中編號1與編號4的圓心角分別是多少度?
(3)你最喜歡以上哪一種教學方式,請?zhí)岢瞿愕慕ㄗh,并簡要說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法中正確的是 ( )
A. 在 Rt△ABC中,若tanA=,則a=4,b=3
B. 在 Rt△ABC中,∠C=90°,則tanA+tanB=1
C. 在 Rt△ABC 中,∠C=90°,若a=3,b=4,則tanA=
D. tan75°=tan(45°+30°)=tan45°+tan30°=1+
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某公司為獎勵在趣味運動會上取得好成績的員工,計劃購買甲、乙兩種獎品共20件,其中甲種獎品每件40元,乙種獎品每件30元.
(1)如果購買甲、乙兩種獎品共花費了650元,求甲、乙兩種獎品各購買了多少件;
(2)如果購買乙種獎品的件數(shù)不超過甲種獎品件數(shù)的2倍,總花費不超過680元,求該公司有哪幾種不同的購買方案.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com