【題目】如圖,在△ABC中,AB=AC,BD平分∠ABCAC于點(diǎn)D,AE∥BDCB的延長(zhǎng)線于點(diǎn)E.若∠E=35°,則∠BAC的度數(shù)為( 。

A. 40° B. 45° C. 60° D. 70°

【答案】A

【解析】根據(jù)平行線的性質(zhì)可得∠CBD的度數(shù),根據(jù)角平分線的性質(zhì)可得∠CBA的度數(shù),根據(jù)等腰三角形的性質(zhì)可得∠C的度數(shù),根據(jù)三角形內(nèi)角和定理可得∠BAC的度數(shù).

解:∵AE∥BD,∴∠CBD=∠E=35°,∵BD平分∠ABC,∴∠CBA=70°,∵AB=AC,

∴∠C=∠CBA=70°,∴∠BAC=180°﹣70°×2=40°.

故選A.

“點(diǎn)睛”考查了平行線的性質(zhì),角平分線的性質(zhì),等腰三角形的性質(zhì)和三角形內(nèi)角和定理.關(guān)鍵是得到∠C=∠CBA=70°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程:

(1)2x+3=x+5;

(2)2(3y-1)-3(2-4y)=9y+10;

(3)

(4).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一個(gè)長(zhǎng)方形運(yùn)動(dòng)場(chǎng)被分隔成A,B,A,B,C共5個(gè)區(qū),A區(qū)是邊長(zhǎng)為a m的正方形,C區(qū)是邊長(zhǎng)為c m的正方形.

(1)列式表示每個(gè)B區(qū)長(zhǎng)方形場(chǎng)地的周長(zhǎng),并將式子化簡(jiǎn);

(2)列式表示整個(gè)長(zhǎng)方形運(yùn)動(dòng)場(chǎng)的周長(zhǎng),并將式子化簡(jiǎn);

(3)如果a=40,c=10,求整個(gè)長(zhǎng)方形運(yùn)動(dòng)場(chǎng)的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知DGBCACBC,EFAB,1=2,求證:CDAB

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】當(dāng)﹣1≤x≤1時(shí),二次函數(shù)y=﹣(x﹣m)2+m2+1有最大值4,則實(shí)數(shù)m的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中國(guó)古代對(duì)勾股定理有深刻的認(rèn)識(shí).

(1)三國(guó)時(shí)代吳國(guó)數(shù)學(xué)家趙爽第一次對(duì)勾股定理加以證明:用四個(gè)全等的圖1所示的直角三角形拼成一個(gè)圖2所示的大正方形,中間空白部分是一個(gè)小正方形.如果大正方形的面積是13,小正方形的面積是1,直角三角形的兩直角邊分別為a,b,求(a+b)2的值;

(2)清朝的康熙皇帝對(duì)勾股定理也很有研究,他著有《積求勾股法》:用現(xiàn)代的數(shù)學(xué)語言描述就是:若直角三角形的三邊長(zhǎng)分別為3,4,5的整數(shù)倍,設(shè)其面積為S,則求其邊長(zhǎng)的方法為:第一步=m;第二步: =k;第三步:分別用3,4,5乘k,得三邊長(zhǎng).當(dāng)面積S等于150時(shí),請(qǐng)用“積求勾股法”求出這個(gè)直角三角形的三邊長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在直線上順次取 A,BC 三點(diǎn),分別以 AB,BC 為邊長(zhǎng)在直線的同側(cè)作正三角形, 作得兩個(gè)正三角形的另一頂點(diǎn)分別為 D,E

(1)如圖①,連結(jié) CD,AE,求證:CDAE

(2)如圖②,若 AB1BC2,求 DE 的長(zhǎng);

(3)如圖③,將圖②中的正三角形 BCE B 點(diǎn)作適當(dāng)?shù)男D(zhuǎn),連結(jié) AE,若有 DE2BE2AE2,試求∠DEB 的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)計(jì)算:tan260°+4sin30°cos45°
(2)解方程:x2﹣4x+3=0.

查看答案和解析>>

同步練習(xí)冊(cè)答案