如圖,AB∥CD,分別探索下列四個圖形中∠P、∠A、∠C,發(fā)現(xiàn)有如下三種數(shù)量關(guān)系:
∠A+∠C=∠P;∠P+∠A=∠C;∠P+∠C=∠A,請你選擇其中的兩種數(shù)量關(guān)系說明理由.
(1)我選擇的是圖
(2)
(2)
,數(shù)量關(guān)系式是
∠A+∠C=∠P
∠A+∠C=∠P
理由:
(2)我選擇的是圖
(3)
(3)
,數(shù)量關(guān)系式是
∠P+∠A=∠C
∠P+∠A=∠C
理由:
分析:(1)首先過點P作PE∥AB,由AB∥CD,即可得AB∥PE∥CD,然后根據(jù)兩直線平行,同旁內(nèi)角互補,即可求得答案;
(2)首先過點P作PE∥AB,由AB∥CD,即可得AB∥PE∥CD,然后根據(jù)兩直線平行,內(nèi)錯角相等,即可求得答案;
(3)由AB∥CD,根據(jù)兩直線平行,同位角相等,即可求得∠1=∠C,又由三角形外角的性質(zhì),即可求得答案;
(4)由AB∥CD,根據(jù)兩直線平行,同位角相等,即可求得∠1=∠A,又由三角形外角的性質(zhì),即可求得答案.
解答:解:(1)∠A+∠P+∠C=360°.
理由:過點P作PE∥AB,
∵AB∥CD,
∴AB∥PE∥CD,
∴∠A+∠1=180°,∠2+∠C=180°,
∴∠A+∠C+∠APC=∠A+∠1+∠2+∠C=360°.

(2)∠P=∠A+∠C.
理由:過點P作PE∥AB,
∵AB∥CD,
∴AB∥PE∥CD,
∴∠1=∠A,∠2=∠C,
∴∠APC=∠1+∠2=∠A+∠C.

(3)∠C=∠A+∠P.
理由:∵AB∥CD,
∴∠1=∠C,
∵∠1=∠A+∠P,
∴∠C=∠A+∠P;

(4)∠A=∠C+∠P.
理由:∵AB∥CD,
∴∠1=∠A,
∵∠1=∠C+∠P,
∴∠A=∠C+∠P.
點評:此題考查了平行線的性質(zhì)與三角形外角的性質(zhì).此題難度不大,解題的關(guān)鍵是注意掌握兩直線平行,同位角相等;兩直線平行,內(nèi)錯角相等與兩直線平行,同旁內(nèi)角互補定理的應(yīng)用,注意輔助線的作法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

39、填寫推理理由
(1)已知:如圖,D、F、E分別是BC、AC、AB上的點,DF∥AB,DE∥AC,試說明∠EDF=∠A.
解:∵DF∥AB(
已知

∴∠A+∠AFD=180°(
兩直線平行,同旁內(nèi)角互補

∵DE∥AC(
已知

∴∠AFD+∠EDF=180°(
兩直線平行,同旁內(nèi)角互補

∴∠A=∠EDF(
同角的補角相等


(2)如圖,AB∥CD,∠1=∠2,∠3=∠4,試說明AD∥BE.
解:∵AB∥CD(已知)
∴∠4=∠
BAF
兩直線平行,同位角相等

∵∠3=∠4(已知)
∴∠3=∠
BAF
等量代換

∵∠1=∠2(已知)
∴∠1+∠CAF=∠2+∠CAF(
等式的性質(zhì)

即∠
BAF
=∠
DAC

∴∠3=∠
DAC
等量代換

∴AD∥BE(
內(nèi)錯角相等,兩直線平行

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,AB∥CD,BO:OC=1:4,點E、F分別是OC、OD的中點,則EF:AB的值為( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,AB∥CD、AD∥CE,F(xiàn)、G分別是AC和FD的中點,過G的直線依次交AB、AD、CD、CE于點M、N、P、Q,
求證:MN+PQ=2PN.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,AB∥CD.
(1)如果∠BAE=∠DCE=45°,求∠E的度數(shù).請將下面解題過程補充完整.
∵AB∥CD(已知)精英家教網(wǎng)
∴∠BAC+∠DCA=180°(
 

∴∠EAC+∠BAE+∠ACE+∠DCE=180°∵∠BAE=∠DCE=45°(已知)
∴∠EAC+
 
+∠ACE+
 
=180°(
 

∴∠EAC+∠ACE=
 

∵∠EAC+∠ACE+∠E=180°(
 

∴∠E=180°-(
 
)=
 


(2)如果AE、CE分別是∠BAC、∠DCA的平分線,(1)中的結(jié)論還成立嗎?試說明理由.
(3)如果AE、CE分別是∠BAC、∠DCA內(nèi)部的任意射線.求證:∠AEC=∠BAE+∠DCE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,AB∥CD,BO:CO=1:4,點E、F分別是OC、OD的中點,則AB:EF的值為( 。

查看答案和解析>>

同步練習(xí)冊答案