【題目】班主任張老師為了了解學(xué)生課堂發(fā)言情況,對前一天本班男、女生發(fā)言次數(shù)進(jìn)行了統(tǒng)計,并繪制成如下頻數(shù)分布折線圖(圖1).
(1)請根據(jù)圖1,回答下列問題:
①這個班共有名學(xué)生,發(fā)言次數(shù)是5次的男生有人、女生有人;
②男、女生發(fā)言次數(shù)的中位數(shù)分別是次和次;
(2)通過張老師的鼓勵,第二天的發(fā)言次數(shù)比前一天明顯增加,全班發(fā)言次數(shù)變化的人數(shù)的扇形統(tǒng)計圖如圖2所示,求第二天發(fā)言次數(shù)增加3次的學(xué)生人數(shù)和全班增加的發(fā)言總次數(shù).
【答案】
(1)40,2,5,4,5
(2)解:發(fā)言次數(shù)增加3次的學(xué)生人數(shù)為:40×(1﹣20%﹣30%﹣40%)=4(人)
全班增加的發(fā)言總次數(shù)為:
40%×40×1+30%×40×2+4×3,
=16+24+12,
=52次.
【解析】解:(1)①(2+1+6+4+2+3+2)+(1+2+3+2+5+4+3)=20+20=40名;
發(fā)言次數(shù)是5次的男生有2人、女生有5人;②∵按從小到大排序后,男生第10個,11個都是4;女生第10個,11個都是5.
∴男、女生發(fā)言次數(shù)的中位數(shù)分別是4;5;
【考點精析】解答此題的關(guān)鍵在于理解頻數(shù)折線圖的相關(guān)知識,掌握能清楚地表示出收集或調(diào)查得到的各組的頻數(shù)及變化,以及對扇形統(tǒng)計圖的理解,了解能清楚地表示出各部分在總體中所占的百分比.但是不能清楚地表示出每個項目的具體數(shù)目以及事物的變化情況.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了增強(qiáng)抗旱能力,保證今年夏糧豐收,某村新修建了一個蓄水池,這個蓄水池安裝了兩個進(jìn)水管和一個出水管(兩個進(jìn)水管的進(jìn)水速度相同)一個進(jìn)水管和一個出水管的進(jìn)出水速度如圖(1)所示,某天0點到6點(至少打開一個水管),該蓄水池的蓄水量如圖(2)所示,并給出以下三個論斷:①0點到1點不進(jìn)水,只出水;②1點到4點不進(jìn)水,不出水;③4點到6點只進(jìn)水,不出水.則一定正確的論斷是( )
A.①③B.②③C.③D.①②
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,對角線AC和BD相交于點O,點E是BC的中點,連結(jié)AE,若∠ABC=60°,BE=2cm,求:
(1)菱形ABCD的周長;
(2)菱形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在平面上四點A,B,C,D,按下列要求畫出圖形;
(1)射線AB,直線CB;
(2)取線段AB的中點E,連接DE并延長與直線CB交于點O;
(3)在所畫的圖形中,若AB=6,BE=BC=OB,求OC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,,,以B點為直角頂點在第二象限作等腰直角.
求C點的坐標(biāo);
在坐標(biāo)平面內(nèi)是否存在一點P,使與全等?若存在,直接寫出P點坐標(biāo),若不存在,請說明理由;
如圖2,點E為y軸正半軸上一動點,以E為直角頂點作等腰直角,過M作軸于N,直接寫出的值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,兩個完全相同的三角尺ABC和DEF在直線l上滑動,可以添加一個條件,使四邊形CBFE為菱形,下列選項中錯誤的是( )
A. BD=AE
B. CB=BF
C. BE⊥CF
D. BA平分∠CBF
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,D是邊BC上一動點(不與B,C重合),DE⊥AB于點E,點F是線段AD的中點,連接EF,CF.
(1)試猜想線段EF與CF的大小關(guān)系,并加以證明.
(2)若∠BAC=30°,連接CE,在D點運動過程中,探求CE與AD的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰梯形ABCD中,AD∥BC,M、N分別為AD、BC的中點,E、F分別是BM、CM的中點.
⑴求證:△ABM≌△DCM;
⑵四邊形MENF是什么圖形?請證明你的結(jié)論;
⑶若四邊形MENF是正方形,則梯形的高與底邊BC有何數(shù)量關(guān)系?并請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com