【題目】如圖,已知四邊形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四邊形ABCD的面積.
【答案】36
【解析】
連接AC,由題意可得三角形ABC為直角三角形,由AB與BC的長(zhǎng),利用勾股定理求出AC的長(zhǎng),再由AC,DC及AD的長(zhǎng),利用勾股定理的逆定理得到三角形ADC為直角三角形,分別求出兩直角三角形的面積,相加即可得到四邊形ABCD的面積.
解:連接AC,
∵∠B=90°,
∴△ABC為直角三角形,
∵BC=4cm,AB=3cm,
∴根據(jù)勾股定理得:BD=cm,
在△ADC中,AC2+DC2=52+122=25+144=169,AD2=132=169,
∵AC2+CD2=AD2,
∴△ACD為直角三角形,
則S四邊形ABCD=S△ABC+S△DAC=ABBC+ACCD=×3×4+×5×12=6+30=36(cm2).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線y=﹣x2+bx+c交y軸于點(diǎn)A(0,4),交x軸于點(diǎn)B(4,0),點(diǎn)P是拋物線上一動(dòng)點(diǎn),過(guò)點(diǎn)P作x軸的垂線PQ,過(guò)點(diǎn)A作AQ⊥PQ于點(diǎn)Q,連接AP.
(1)填空:拋物線的解析式為 ,點(diǎn)C的坐標(biāo) ;
(2)點(diǎn)P在拋物線上運(yùn)動(dòng),若△AQP∽△AOC,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一船在燈塔的正東方向海里的處,以20海里/時(shí)的速度沿北偏西方向航行。
(1)多長(zhǎng)時(shí)間后,船距燈塔最近?
(2)多長(zhǎng)時(shí)間后,船到燈塔的正北方向?此時(shí)船距燈塔有多遠(yuǎn)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】勾股定理神秘而美妙,它的證法多樣,其巧妙各有不同,其中的“面積法”給了小聰以靈感,他驚喜的發(fā)現(xiàn),當(dāng)兩個(gè)全等的直角三角形如圖1或圖2擺放時(shí),都可以用“面積法”來(lái)證明,下面是小聰利用圖1證明勾股定理的過(guò)程:
將兩個(gè)全等的直角三角形按圖1所示擺放,其中∠DAB=90°,求證:a2+b2=c2
證明:連接DB,過(guò)點(diǎn)D作BC邊上的高DF,則DF=EC=b﹣a.
∵S四邊形ADCB=S△ACD+S△ABC=b2+ab.
又∵S四邊形ADCB=S△ADB+S△DCB=c2+a(b﹣a)
∴b2+ab=c2+a(b﹣a)
∴a2+b2=c2
請(qǐng)參照上述證法,利用圖2完成下面的證明.
將兩個(gè)全等的直角三角形按圖2所示擺放,其中∠DAB=90°.求證:a2+b2=c2
證明:連結(jié)______,過(guò)點(diǎn)B作________,則____________.
∵S五邊形ACBED=S△ACB+S△ABE+S△ADE=____________.
又∵S五邊形ACBED=______________=ab+c2+a(b﹣a),
∴___________________=ab+c2+a(b﹣a),
∴a2+b2=c2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小王上周買(mǎi)進(jìn)某種股票1000股,每股27元。
(1)星期三收盤(pán)時(shí),每股是多少元?
(2)本周內(nèi)最高價(jià)是每股多少元?最低價(jià)是每股多少元?
(3)若小王在本周五的收盤(pán)價(jià)將股票全部賣(mài)出,你認(rèn)為他會(huì)獲利嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知m≥2,n≥2,且m,n均為正整數(shù),如果將mn進(jìn)行如圖所示的“分解”,那么下列四個(gè)敘述中正確的有__________(只需填序號(hào)).
①在25的“分解”中最大的數(shù)是11.
②在43的“分解”中最小的數(shù)是13.
③若m3的“分解”中最小的數(shù)是23,則m=5.
④若3n的“分解”中最小的數(shù)是79,則n=5.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知如圖,三點(diǎn)在同一直線上,.
(1)已知點(diǎn)在直線上,根據(jù)條件,請(qǐng)補(bǔ)充完整圖形,并求的長(zhǎng);
(2)已知點(diǎn)在直線上,分別是,的中點(diǎn),根據(jù)條件,請(qǐng)補(bǔ)充完整圖形,并求的長(zhǎng),直接寫(xiě)出與的長(zhǎng)存在的數(shù)量關(guān)系;
(3)已知點(diǎn)在直線上,分別是,的中點(diǎn),根據(jù)條件,請(qǐng)補(bǔ)充完整圖形,并求的長(zhǎng),直接寫(xiě)出與的長(zhǎng)存在的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,有、、三個(gè)居民小區(qū)的位置成三角形,現(xiàn)決定在三個(gè)小區(qū)之間修建一個(gè)購(gòu)物超市,使超市到三個(gè)小區(qū)的距離相等,則超市應(yīng)建在( )
A.在∠A、∠B兩內(nèi)角平分線的交點(diǎn)處
B.在AC、BC兩邊垂直平分線的交點(diǎn)處
C.在AC、BC兩邊高線的交點(diǎn)處
D.在AC、BC兩邊中線的交點(diǎn)處
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】中國(guó)的茶文化源遠(yuǎn)流長(zhǎng),根據(jù)制作方法和茶多酚氧化(發(fā)酵)程度的不同,可分為六大類(lèi):綠茶(不發(fā)酵)、白茶(輕微發(fā)酵)、黃茶(輕發(fā)酵)、青茶(半發(fā)酵)、黑茶(后發(fā)酵)、紅茶(全發(fā)酵).春節(jié)將至,為款待親朋好友,小葉去茶莊選購(gòu)茶葉.茶莊有碧螺春、龍井兩種綠茶,一種青茶——武夷巖茶及一種黃茶——銀針出售.
(1)隨機(jī)購(gòu)買(mǎi)一種茶葉,是綠茶的概率為________;
(2)隨機(jī)購(gòu)買(mǎi)兩種茶葉,求一種是綠茶、一種是銀針的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com