如圖正方形ABCD中,E為AD邊上的中點(diǎn),過(guò)A作AF⊥BE,交CD邊于F,M是AD邊上一點(diǎn),且有BM=DM+CD.
⑴求證:點(diǎn)F是CD邊的中點(diǎn);
⑵求證:∠MBC=2∠ABE.
證明:⑴∵正方形ABCD中AD=AB,∠ADC=∠BAD=90°
∴∠1+∠2=90°
∵AF⊥BE ∴∠3+∠2=90°
∴∠1=∠3
在△ADF和△BAE中
∴△ADF≌△BAE ∴DF=AE
∵AE=DE=AD AD=AB
∴DF=CF=AB ∴點(diǎn)F是CD邊的中點(diǎn)
⑵連結(jié)BF,并延長(zhǎng)交AD的延長(zhǎng)線于點(diǎn)N
∵正方形ABCD中AD∥BC ∴∠4=∠N
在△NDF和△BCF中
∴△NDF≌△BCF ∴DN=CB
∵正方形ABCD中AD=BC=CD ∴DN=CD
∵BM=DM+CD ∴BM=DM+DN=MN
∴∠5=∠N=∠4 即∠MBC=2∠4
在△ADF和△BCF中
∴△ADF≌△BCF ∴∠1=∠4
∵∠1=∠3 ∴∠1=∠4
∴∠MBC=2∠3=2∠ABE
(注:只要方法正確按同等情況給分)新- 課 -標(biāo)- 第 -一- 網(wǎng)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
為實(shí)現(xiàn)區(qū)域教育均衡發(fā)展,我市計(jì)劃對(duì)某縣、兩類薄弱學(xué)校全部進(jìn)行改造.根據(jù)預(yù)算,共需資金1575萬(wàn)元.改造一所類學(xué)校和兩所類學(xué)校共需資金230萬(wàn)元;改造兩所類學(xué)校和一所類學(xué)校共需資金205萬(wàn)元.
(1)改造一所類學(xué)校和一所類學(xué)校所需的資金分別是多少萬(wàn)元?
(2)若該縣的類學(xué)校不超過(guò)5所,則類學(xué)校至少有多少所?
(3)我市計(jì)劃今年對(duì)該縣、兩類學(xué)校共6所進(jìn)行改造,改造資金由國(guó)家財(cái)政和地方財(cái)政共同承擔(dān).若今年國(guó)家財(cái)政撥付的改造資金不超過(guò)400萬(wàn)元;地方財(cái)政投入的改造資金不少于70萬(wàn)元,其中地方財(cái)政投入到、兩類學(xué)校的改造資金分別為每所10萬(wàn)元和15萬(wàn)元.請(qǐng)你通過(guò)計(jì)算求出有幾種改造方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,O為平行四邊形ABCD的對(duì)角線AC的中點(diǎn),過(guò)點(diǎn)O作一條直線分別與AB、CD交于點(diǎn)M、N,點(diǎn)E、F在直線MN上,且OE=OF。
(1)、圖中共有幾對(duì)全等三角形,請(qǐng)把它們都寫出;
(2)、求證:∠MAE=∠NCF。
|
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
某班抽取6名同學(xué)參加體能測(cè)試,成績(jī)?nèi)缦?80,90,75,75,80,80.下列表述錯(cuò)誤的是( )
A.眾數(shù)是80 B.中位數(shù)是75 C.平均數(shù)是80 D.極差是15
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖所示,有一張一個(gè)角為60°的直角三角形紙片,沿其一條中位線剪開(kāi)后,不能拼成的四邊形是( )
A.鄰邊不等的矩形 B.等腰梯形
C.有一角是銳角的菱形 D.正方形
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com