【題目】已知點P(3m-6,m+1),試分別根據(jù)下列條件,求出點P的坐標.
(1)點P的橫坐標比縱坐標大1;
(2)點P在過點A(3,-2),且與x軸平行的直線上;
(3)點P到y軸的距離是到x軸距離的2倍.
【答案】(1);(2);(3)或.
【解析】
(1)根據(jù)坐標比縱坐標大1列出方程求解,進一步即可得出答案;
(2)根據(jù)點P在過點A(3,-2),且與x軸平行的直線上,可得與x軸平行的線的解析式為y=-2,最后根據(jù)點P在直線上求解即可;
(3)根據(jù)點P到y軸的距離是到x軸距離的2倍分情況建立方程求解即可.
(1)∵點P的橫坐標比縱坐標大1,
∴3m-6-1=m+1,
∴m=4,
∴,,
∴點P坐標為:(6,5) ;
(2) ∵設過點A(3,-2),且與x軸平行的線的解析式為y=-2,
∵點P在直線y=-2上,
∴m+1=-2,
∴m=-3,
∴,
∴點P坐標為:(-15,-2);
(3)∵點P到y軸的距離是到x軸距離的2倍,
∴①3m-6= (m+1),
∴m=;
∴,,
∴點P的坐標為:();
②3m-6=- (m+1),
∴,
∴,,
∴點P的坐標為:();
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABE中,C為邊AB延長線上一點,BC=AE,點D在∠EBC內(nèi)部,且∠EBD=∠A=∠DCB.
(1)求證:△ABE≌△CDB.
(2)連結DE,若∠CDB=60°,∠AEB=50°,求∠BDE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明在學習過程中,對教材中的一個有趣問題做如下探究:
(習題回顧)已知:如圖1,在△ABC中,∠ACB=90°,AE是角平分線,CD是高,AE、CD相交于點F.求證:∠CFE=∠CEF;
(變式思考)如圖2,在△ABC中,∠ACB=90°,CD是AB邊上的高,若△ABC的外角∠BAG的平分線交CD的延長線于點F,其反向延長線與BC邊的延長線交于點E,則∠CFE與∠CEF還相等嗎?說明理由;
(探究廷伸)如圖3,在△ABC中,在AB上存在一點D,使得∠ACD=∠B,角平分線AE交CD于點F.△ABC的外角∠BAG的平分線所在直線MN與BC的延長線交于點M.試判斷∠M與∠CFE的數(shù)量關系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中.AB=AC.∠BAC=36°.BD是∠ABC的平分線,交AC于點D,E是AB的中點,連接ED并延長,交BC的延長線于點F,連接AF.求證:(1)EF⊥AB; (2)△ACF為等腰三角形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線a∥b,△ABC是等邊三角形,點A在直線a上,邊BC在直線b上,把△ABC沿BC方向平移BC的一半得到△A′B′C′(如圖①);繼續(xù)以上的平移得到圖②,再繼續(xù)以上的平移得到圖③,…;請問在第100個圖形中等邊三角形的個數(shù)是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校從兩名優(yōu)秀選手中選一名參加全市中小學運動會的男子米跑項目,該校預先對這兩名選手測試了次,測試成績?nèi)缦卤?/span>
甲的成績(秒) | ||||||||
乙的成績(秒) |
為了衡量這兩名選手米跑的水平,你選擇哪些統(tǒng)計量?請分別求出這些統(tǒng)計量的值.
你認為選派誰比較合適?為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知函數(shù)y=x+2的圖象與y軸交于點A,一次函數(shù)y=kx+b的圖象經(jīng)過點B(0,4)且與x軸及y=x+2的圖象分別交于點C、D,點D的坐標為(,n)
(1)則n= ,k= ,b=_______.
(2)若函數(shù)y=kx+b的函數(shù)值大于函數(shù)y=x+2的函數(shù)值,則x的取值范圍是_______.
(3)求四邊形AOCD的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,二次函數(shù)的圖象與軸交于、兩點,點在原點的左則,點的坐標為,與軸交于點,點是直線下方的拋物線上一動點.
求這個二次函數(shù)的表達式;
求出四邊形的面積最大時的點坐標和四邊形的最大面積;
連結、,在同一平面內(nèi)把沿軸翻折,得到四邊形,是否存在點,使四邊形為菱形?若存在,請求出此時點的坐標;若不存在,請說明理由;
在直線找一點,使得為等腰三角形,請直接寫出點坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線與軸的交點為,與軸的交點分別為,,且,直線軸,在軸上有一動點過點作平行于軸的直線與拋物線、直線的交點分別為、.
求拋物線的解析式;
當時,求面積的最大值;
當時,是否存在點,使以、、為頂點的三角形與相似?若存在,求出此時的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com