如圖,一條拋物線經(jīng)過點(diǎn)A(-3,0) 、點(diǎn)B(1,0)和點(diǎn)C(2,).
(1)求該拋物線的函數(shù)關(guān)系式及頂點(diǎn)坐標(biāo);
(2)求上述拋物線關(guān)于x軸對稱的新拋物線的函數(shù)關(guān)系式.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,一條拋物線經(jīng)過原點(diǎn),且頂點(diǎn)B的坐標(biāo)(1,-1).
(1)求這個拋物線的解析式;
(2)設(shè)該拋物線與x軸正半軸的交點(diǎn)為A,求證:△OBA為等腰直角三角形;
(3)設(shè)該拋物線的對稱軸與x軸的交點(diǎn)為C,請你在拋物線位于x軸上方的圖象上求兩點(diǎn)E、F,使△ECF為等腰直角三角形,且∠ECF=90°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,一條拋物線經(jīng)過原點(diǎn),且頂點(diǎn)B的坐標(biāo)(1,-1).
(1)求這個拋物線的解析式;
(2)設(shè)該拋物線與x軸正半軸的交點(diǎn)為A,求證:△OBA為等腰直角三角形;
(3)設(shè)該拋物線的對稱軸與x軸的交點(diǎn)為C,請你在拋物線位于x軸上方的圖象上求兩點(diǎn)E、F,使△ECF為等腰直角三角形,且∠ECF=90°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇省無錫市九年級上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,一條拋物線經(jīng)過原點(diǎn)和點(diǎn)C(8,0),A、B是該拋物線上的兩點(diǎn),AB∥x軸,OA=5,AB=2.點(diǎn)E在線段OC上,作∠MEN=∠AOC,使∠MEN的一邊始終經(jīng)過點(diǎn)A,另一邊交線段BC于點(diǎn)F,連接AF.

(1)求拋物線的解析式;

(2)當(dāng)點(diǎn)F是BC的中點(diǎn)時,求點(diǎn)E的坐標(biāo);

(3)當(dāng)△AEF是等腰三角形時,求點(diǎn)E的坐標(biāo).

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年陜西省中考數(shù)學(xué)模擬試卷(一)(解析版) 題型:解答題

如圖,一條拋物線經(jīng)過原點(diǎn),且頂點(diǎn)B的坐標(biāo)(1,-1).
(1)求這個拋物線的解析式;
(2)設(shè)該拋物線與x軸正半軸的交點(diǎn)為A,求證:△OBA為等腰直角三角形;
(3)設(shè)該拋物線的對稱軸與x軸的交點(diǎn)為C,請你在拋物線位于x軸上方的圖象上求兩點(diǎn)E、F,使△ECF為等腰直角三角形,且∠ECF=90°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年陜西省中考數(shù)學(xué)試卷(副卷)(解析版) 題型:解答題

如圖,一條拋物線經(jīng)過原點(diǎn),且頂點(diǎn)B的坐標(biāo)(1,-1).
(1)求這個拋物線的解析式;
(2)設(shè)該拋物線與x軸正半軸的交點(diǎn)為A,求證:△OBA為等腰直角三角形;
(3)設(shè)該拋物線的對稱軸與x軸的交點(diǎn)為C,請你在拋物線位于x軸上方的圖象上求兩點(diǎn)E、F,使△ECF為等腰直角三角形,且∠ECF=90°.

查看答案和解析>>

同步練習(xí)冊答案