已知二次函數(shù)y=(t+1)x2+2(t+2)x+
3
2
在x=0和x=2時(shí)的函數(shù)值相等.
(1)求二次函數(shù)的解析式;
(2)若一次函數(shù)y=kx+6的圖象與二次函數(shù)的圖象都經(jīng)過(guò)點(diǎn)A(-3,m),求m和k的值;
(3)設(shè)二次函數(shù)的圖象與x軸交于點(diǎn)B,C(點(diǎn)B在點(diǎn)C的左側(cè)),將二次函數(shù)的圖象在點(diǎn)B,C間的部分(含點(diǎn)B和點(diǎn)C)向左平移n(n>0)個(gè)單位后得到的圖象記為G,同時(shí)將(2)中得到的直線y=kx+6向上平移n個(gè)單位.請(qǐng)結(jié)合圖象回答:當(dāng)平移后的直線與圖象G有公共點(diǎn)時(shí),求n的取值范圍.
(1)∵二次函數(shù)y=(t+1)x2+2(t+2)x+
3
2
在x=0和x=2時(shí)的函數(shù)值相等,
∴代入得:0+0+
3
2
=4(t+1)+4(t+2)+
3
2
,
解得:t=-
3
2

∴y=(-
3
2
+1)x2+2(-
3
2
+2)x+
3
2
=-
1
2
x2+x+
3
2
,
∴二次函數(shù)的解析式是y=-
1
2
x2+x+
3
2


(2)把A(-3,m)代入y=-
1
2
x2+x+
3
2
得:m=-
1
2
×(-3)2-3+
3
2
=-6,
即A(-3,-6),
代入y=kx+6得:-6=-3k+6,
解得:k=4,
即m=-6,k=4.

(3)由題意可知,點(diǎn)B、C間的部分圖象的解析式是y=-
1
2
x2+x+
3
2
=-
1
2
(x2-2x-3)=-
1
2
(x-3)(x+1),-1≤x≤3,
則拋物線平移后得出的圖象G的解析式是y=-
1
2
(x-3+n)(x+1+n),-n-1≤x≤3-n,
此時(shí)直線平移后的解析式是y=4x+6+n,
如果平移后的直線與平移后的二次函數(shù)相切,
則方程4x+6+n=-
1
2
(x-3+n)(x+1+n)有兩個(gè)相等的實(shí)數(shù)解,
即-
1
2
x2-(n+3)x-
1
2
n2-
9
2
=0有兩個(gè)相等的實(shí)數(shù)解,
判別式△=[-(n+3)]2-4×(-
1
2
)×(-
1
2
n2-
9
2
)=6n=0,
即n=0,
∵與已知n>0相矛盾,
∴平移后的直線與平移后的拋物線不相切,
∴結(jié)合圖象可知,如果平移后的直線與拋物線有公共點(diǎn),
則兩個(gè)臨界的交點(diǎn)為(-n-1,0),(3-n,0),
則0=4(-n-1)+6+n,
n=
2
3

0=4(3-n)+6+n,
n=6,
即n的取值范圍是:
2
3
≤n≤6.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,有一個(gè)橫截面是拋物線的運(yùn)河,一次,運(yùn)河管理員將一根長(zhǎng)6m的鋼管(AB)一端在運(yùn)河底部A點(diǎn),另一端露出水面并靠在運(yùn)河邊緣的B點(diǎn),發(fā)現(xiàn)鋼管4m浸沒(méi)在水中(AC=4米),露出水面部分的鋼管BC與水面部分的鋼管BC與水面成30°的夾角(鋼管與拋物線的橫截面在同一平面內(nèi))
(1)以水面所在直線為x軸,建立如圖所示的直角坐標(biāo)系,求該運(yùn)河橫截面的拋物線解析式;
(2)若有一艘貨船從當(dāng)中通過(guò),已知貨船底部最寬處為12米,吃水深(即船底與水面的距離)為1米,此時(shí)貨船是否能安全通過(guò)該運(yùn)河?若能,請(qǐng)說(shuō)明理由;若不能,則需上游開(kāi)閘放水提高水位,當(dāng)水位上升多少米時(shí),貨船能順利通過(guò)運(yùn)河?(船與河床之間的縫隙忽略不計(jì))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(1,
3
),點(diǎn)B的坐標(biāo)(-2,0),點(diǎn)O為原點(diǎn).
(1)求過(guò)點(diǎn)A,O,B的拋物線解析式;
(2)在x軸上找一點(diǎn)C,使△ABC為直角三角形,請(qǐng)直接寫(xiě)出滿足條件的點(diǎn)C的坐標(biāo);
(3)將原點(diǎn)O繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)120°后得點(diǎn)O′,判斷點(diǎn)O′是否在拋物線上,請(qǐng)說(shuō)明理由;
(4)在x軸下方的拋物線上是否存在一點(diǎn)P,過(guò)點(diǎn)P作x軸的垂線,交直線AB于點(diǎn)E,線段OE把△AOB分成兩個(gè)三角形,使其中一個(gè)三角形面積與四邊形BPOE面積比為2:3,若存在,求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,直線y=
3
3
x+b
經(jīng)過(guò)點(diǎn)B(-
3
,2),且與x軸交于點(diǎn)A.將拋物線y=
1
3
x2
沿x軸作左右平移,記平移后的拋物線為C,其頂點(diǎn)為P.
(1)求∠BAO的度數(shù);
(2)直線AB交拋物線y=
1
3
x2
的右側(cè)于點(diǎn)D,問(wèn)點(diǎn)B是AD中點(diǎn)嗎?試說(shuō)明理由;
(3)拋物線C與y軸交于點(diǎn)E,與直線AB交于兩點(diǎn),其中一個(gè)交點(diǎn)為F.當(dāng)線段EFx軸時(shí),求平移后的拋物線C對(duì)應(yīng)的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(2口口少•荊門(mén))9開(kāi)4向上4拋物線與x軸交于g(m-2,口),B(m+2,口)兩點(diǎn),記拋物線頂點(diǎn)為C,且gC⊥BC.
(你)若m為常數(shù),求拋物線4解析式;
(2)若m為小于口4常數(shù),那么(你)中4拋物線經(jīng)過(guò)怎么樣4平移可以使頂點(diǎn)在坐標(biāo)原點(diǎn);
(右)設(shè)拋物線交三軸正半軸于下點(diǎn),問(wèn)是否存在實(shí)數(shù)m,使得△BO下為等腰三角形?若存在,求出m4值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,一小球從斜坡O點(diǎn)處拋出,球的拋出路線可以用二次函數(shù)y=4x-
1
2
x2
刻畫(huà),斜坡可以用一次函數(shù)y=
1
2
x
刻畫(huà).
(1)求小球到達(dá)的最高點(diǎn)的坐標(biāo);
(2)小球的落點(diǎn)是A,求點(diǎn)A的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,一條拋物線與x軸相交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),其頂點(diǎn)P在線段MN上移動(dòng).若點(diǎn)M、N的坐標(biāo)分別為(-1,-2)、(1,-2),點(diǎn)B的橫坐標(biāo)的最大值為3,則點(diǎn)A的橫坐標(biāo)的最小值為(  )
A.-3B.-1C.1D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知等邊三角形的邊長(zhǎng)為x(cm),則此三角形的面積S(cm2)關(guān)于x的函數(shù)關(guān)系式是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知拋物線y=x2+mx-2m2(m≠0).
(1)求證:該拋物線與x軸有兩個(gè)不同的交點(diǎn);
(2)過(guò)點(diǎn)P(0,n)作y軸的垂線交該拋物線于點(diǎn)A和點(diǎn)B(點(diǎn)A在點(diǎn)P的左邊),是否存在實(shí)數(shù)m、n,使得AP=2PB?若存在,則求出m、n滿足的條件;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案