【題目】如圖,已知點(diǎn)C03),拋物線的頂點(diǎn)為A2,0),與y軸交于點(diǎn)B0,1),F在拋物線的對(duì)稱軸上,且縱坐標(biāo)為1.點(diǎn)P是拋物線上的一個(gè)動(dòng)點(diǎn),過點(diǎn)PPMx軸于點(diǎn)M,交直線CF于點(diǎn)H,設(shè)點(diǎn)P的橫坐標(biāo)為m

1)求拋物線的解析式;

2)若點(diǎn)P在直線CF下方的拋物線上,用含m的代數(shù)式表示線段PH的長(zhǎng),并求出線段PH的最大值及此時(shí)點(diǎn)P的坐標(biāo);

3)當(dāng)PFPM1時(shí),若將使PCF面積為2”的點(diǎn)P記作巧點(diǎn),則存在多個(gè)巧點(diǎn),且使PCF的周長(zhǎng)最小的點(diǎn)P也是一個(gè)巧點(diǎn),請(qǐng)直接寫出所有巧點(diǎn)的個(gè)數(shù),并求出PCF的周長(zhǎng)最小時(shí)巧點(diǎn)的坐標(biāo).

【答案】1yx22,即yx2x+1;(2m0時(shí),PH的值最大最大值為2,P0,2);(3)△PCF的巧點(diǎn)有3個(gè),△PCF的周長(zhǎng)最小時(shí),巧點(diǎn)的坐標(biāo)為(0,1).

【解析】

1)設(shè)拋物線的解析式為yax22,將點(diǎn)B的坐標(biāo)代入求得a的值即可;

2)求出直線CF的解析式,求出點(diǎn)P、H的坐標(biāo),構(gòu)建二次函數(shù)即可解決問題;

3)據(jù)三角形的面積公式求得點(diǎn)PCF的距離,過點(diǎn)CCGCF,取CG.則點(diǎn)G的坐標(biāo)為(﹣1,2)或(14),過點(diǎn)GGHFC,設(shè)GH的解析式為y=﹣x+b,將點(diǎn)G的坐標(biāo)代入求得直線GH的解析式,將直線GH的解析式與拋物線的解析式,聯(lián)立可得到點(diǎn)P的坐標(biāo),當(dāng)PC+PF最小時(shí),△PCF的周長(zhǎng)最小,由PFPM1可得到PC+PFPC+PM+1,故此當(dāng)C、P、M在一條直線上時(shí),△PCF的周長(zhǎng)最小,然后可求得此時(shí)點(diǎn)P的坐標(biāo);

解:(1)設(shè)拋物線的解析式為yax22,

將點(diǎn)B的坐標(biāo)代入得:4a1,解得a,

∴拋物線的解析式為yx22,即yx2x+1

2)設(shè)CF的解析式為ykx+3,將點(diǎn)F的坐標(biāo)F2,1)代入得:2k+31,解得k=﹣1,

∴直線CF的解析式為y=﹣x+3,

由題意Pm,m2m+1),Hm,﹣m+3),

PH=﹣m2+2,

m0時(shí),PH的值最大最大值為2,此時(shí)P02).

3)由兩點(diǎn)間的距離公式可知:CF2

設(shè)△PCF中,邊CF的上的高線長(zhǎng)為x.則×2x2,解得x

過點(diǎn)CCGCF,取CG.則點(diǎn)G的坐標(biāo)為(﹣1,2).

過點(diǎn)GGHFC,設(shè)GH的解析式為y=﹣x+b,將點(diǎn)G的坐標(biāo)代入得:1+b2,解得b1

∴直線GH的解析式為y=﹣x+1,

yx22聯(lián)立 解得:

所以△PCF的一個(gè)巧點(diǎn)的坐標(biāo)為(0,1).

顯然,直線GHCF的另一側(cè)時(shí),直線GH與拋物線有兩個(gè)交點(diǎn).

FC為定點(diǎn),

CF的長(zhǎng)度不變,

∴當(dāng)PC+PF最小時(shí),△PCF的周長(zhǎng)最。

PFPM1,

PC+PFPC+PM+1,

∴當(dāng)C、PM在一條直線上時(shí),△PCF的周長(zhǎng)最小.

∴此時(shí)P0,1).

綜上所述,△PCF的巧點(diǎn)有3個(gè),△PCF的周長(zhǎng)最小時(shí),巧點(diǎn)的坐標(biāo)為(0,1).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABD中,ABAD,ABO的直徑,DA、DB分別交O于點(diǎn)E、C,連接EC,OE,OC

1)當(dāng)∠BAD是銳角時(shí),求證:△OBC≌△OEC;

2)填空:

AB2,則△AOE的最大面積為  ;

當(dāng)DAO相切時(shí),若AB,則AC的長(zhǎng)為 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法中正確的是(  ).

A. “打開電視機(jī),正在播放《動(dòng)物世界》”是必然事件

B. 某種彩票的中獎(jiǎng)概率為,說明每買1000張,一定有一張中獎(jiǎng)

C. 拋擲一枚質(zhì)地均勻的硬幣一次,出現(xiàn)正面朝上的概率為

D. 想了解長(zhǎng)沙市所有城鎮(zhèn)居民的人均年收入水平,宜采用抽樣調(diào)查

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著社會(huì)的快速發(fā)展,人們對(duì)生活質(zhì)量的要求越來越高,凈水器已經(jīng)走入普通百姓家庭.某電器公司銷售AB兩種型號(hào)的凈水器,第一周售出A型號(hào)凈水器4臺(tái),B型號(hào)凈水器5臺(tái),收人20500元.第二周售出A型號(hào)凈水器6臺(tái),B型號(hào)凈水器10臺(tái),收人36000元.

1)求A、B兩種型號(hào)的凈水器的銷售單價(jià);

2)若該電器公司計(jì)劃第三周銷售這兩種型號(hào)凈水器20臺(tái),要使銷售收入不低于45000元,則第三周至少要售出A種型號(hào)的凈水器多少臺(tái)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A是射線yx≥0)上一點(diǎn),過點(diǎn)AABx軸于點(diǎn)B,以AB為邊在其右側(cè)作正方形ABCD,過點(diǎn)A的雙曲線yCD邊于點(diǎn)E,則的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,點(diǎn)O在對(duì)角線AC上,以OA的長(zhǎng)為半徑的圓OADAC分別交于點(diǎn)E、F,且∠ACB=∠DCE

1)判斷直線CE⊙O的位置關(guān)系,并證明你的結(jié)論;

2)若tan∠ACB=,BC=2,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解全校學(xué)生上學(xué)的交通方式,該校九年級(jí)班的4名同學(xué)聯(lián)合設(shè)計(jì)了一份調(diào)查問卷,對(duì)該校部分學(xué)生進(jìn)行了隨機(jī)調(diào)查騎自行車乘公交車、步行乘私家車、其他方式設(shè)置選項(xiàng),要求被調(diào)查同學(xué)從中單選,并將調(diào)查結(jié)果繪制成條形統(tǒng)計(jì)圖1和扇形統(tǒng)計(jì)圖2,根據(jù)以上信息,解答下列問題:

本次接受調(diào)查的總?cè)藬?shù)是______人,并把條形統(tǒng)計(jì)圖補(bǔ)充完整;

在扇形統(tǒng)計(jì)圖中,乘私家車的人數(shù)所占的百分比是______,其他方式所在扇形的圓心角度數(shù)是______度;

已知這4名同學(xué)中有2名女同學(xué),要從中選兩名同學(xué)匯報(bào)調(diào)查結(jié)果,請(qǐng)你用列表法或畫樹狀圖的方法,求出恰好選出1名男生和1名女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解學(xué)生參加戶外活動(dòng)的情況,某市教育行政部門對(duì)部分學(xué)生參加戶外活動(dòng)的時(shí)間進(jìn)行了抽樣調(diào)查,并將調(diào)查結(jié)果繪制成下列兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)圖中提供的信息解答以下問題:

1)這次抽樣共調(diào)查了  名學(xué)生,并補(bǔ)全條形統(tǒng)計(jì)圖;

2)計(jì)算扇形統(tǒng)計(jì)圖中表示戶外活動(dòng)時(shí)間0.5小時(shí)的扇形圓心角度數(shù);

3)求出本次調(diào)查學(xué)生參加戶外活動(dòng)的平均時(shí)間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖在ABC,ADE中,BAC=DAE=90°,AB=AC,AD=AE,點(diǎn)C,D,E三點(diǎn)在同一條直線上,連接BD,BE.以下四個(gè)結(jié)論:

BD=CE;BDCE;③∠ACE+DBC=45°;BE2=2(AD2+AB2),

其中結(jié)論正確的個(gè)數(shù)是

A.1 B.2 C3 D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案