【題目】作線段ABCD,且ABCD互相垂直平分,交點(diǎn)為O,AB2CD.分別取OA、OB、OC、OD的中點(diǎn)AB、CD,連結(jié)CADA、CB、DB、AC、AD、BC、BD得到一個(gè)四角星圖案.將此四角星沿水平方向向右平移2厘米,作出平移前后的圖形.

【答案】見解析

【解析】試題分析:根據(jù)垂直平分線的意義,畫線段AB4厘米),作AB的垂直平分線段CD2厘米)交AB于點(diǎn)O,再分別取OAOB、OC、OD的中點(diǎn)A、BC、D,連結(jié)CA、DA、CB、DBAC、AD、BC、BD得到一個(gè)四角形圖案ABCD;再根據(jù)平移圖形的特征,把四角形圖案ABCD的四個(gè)頂點(diǎn)分別向右平移2厘米,再首尾連結(jié)各點(diǎn),即可得到四角形圖案ABCD向右平移2厘米后的圖形ABCD

試題解析:解:根據(jù)題意作圖如下:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O為矩形ABCD的中心,M為BC邊上一點(diǎn),N為DC邊上一點(diǎn),ON⊥OM,若AB=6,AD=4,設(shè)OM=x,ON=y,則y與x的函數(shù)關(guān)系式為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】文文和彬彬在證明有兩個(gè)角相等的三角形是等腰三角形這一命題時(shí),畫出圖形,寫出已知,求證(如圖),她們對(duì)各自所作的輔助線描述如下:

文文過點(diǎn)ABC的中垂線AD,垂足為D”;

彬彬:ABC的角平分線AD”

數(shù)學(xué)老師看了兩位同學(xué)的輔助線作法后,說:彬彬的作法是正確的,而文文的作法需要訂正.

1)請你簡要說明文文的輔助線作法錯(cuò)在哪里;

2)根據(jù)彬彬的輔助線作法,完成證明過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】
(1)計(jì)算:
(2)先化簡,再求值: ,其中x=2tan45°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是(  )

A.1的平方根是﹣1

B.4的平方根是2

C.如果一個(gè)數(shù)有平方根,那么這個(gè)數(shù)的平方根一定有兩個(gè)

D.任何一個(gè)非負(fù)數(shù)的立方根都是非負(fù)數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在平面直角坐標(biāo)系中,點(diǎn)A、B、C的坐標(biāo)分別為(﹣1,3)、(﹣4,1)、(﹣2,1),將△ABC沿一確定方向平移得到△A1B1C1,點(diǎn)B的對(duì)應(yīng)點(diǎn)B1的坐標(biāo)是(1,2),則點(diǎn)A1,C1的坐標(biāo)分別是 ( 。

A. A1(4,4),C1(3,2) B. A1(3,3),C1(2,1)

C. A1(4,3),C1(2,3) D. A1(3,4),C1(2,2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O1、⊙O2相交于P、Q兩點(diǎn),其中⊙O1的半徑r1=2,⊙O2的半徑r2= .過點(diǎn)Q作CD⊥PQ,分別交⊙O1和⊙O2于點(diǎn)C、D,連接CP、DP,過點(diǎn)Q任作一直線AB交⊙O1和⊙O2于點(diǎn)A、B,連接AP、BP、AC、DB,且AC與DB的延長線交于點(diǎn)E.
(1)求證: ;
(2)若PQ=2,試求∠E度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二元一次方程x+3y10的非負(fù)整數(shù)解共有_____個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直角坐標(biāo)系中,△ABC的頂點(diǎn)都在網(wǎng)格點(diǎn)上,其中,C點(diǎn)坐標(biāo)為(12).

1)寫出點(diǎn)A、B的坐標(biāo):

2)將△ABC先向左平移2個(gè)單位長度,再向上平移1個(gè)單位長度,得到△A′B′C′,則A′B′C′的三個(gè)頂點(diǎn)坐標(biāo)分別是A′(,)、B′(,)、C′(,).

3△ABC的面積為

查看答案和解析>>

同步練習(xí)冊答案