【題目】如圖,在△ABC中,∠C=90°,∠B=30°,以點A為圓心,任意長為半徑畫弧,分別交AB,AC于點M和N,再分別以點M,N為圓心,大于MN長為半徑畫弧,兩弧交于點P,連結(jié)AP并延長,交BC于點D,則下列說法中,正確的個數(shù)是( )
①AD是∠BAC的平分線;②∠ADC=60°;③點D在AB的中垂線上;④S△DAC∶S△ABC=1∶3.
A. 1 B. 2 C. 3 D. 4
【答案】D
【解析】試題解析::①根據(jù)作圖的過程可知,AD是∠BAC的平分線.
故①正確;
②如圖,∵在△ABC中,∠C=90°,∠B=30°,
∴∠CAB=60°.
又∵AD是∠BAC的平分線,
∴∠1=∠2=∠CAB=30°,
∴∠3=90°-∠2=60°,即∠ADC=60°.
故②正確;
③∵∠1=∠B=30°,
∴AD=BD,
∴點D在AB的中垂線上.
故③正確;
④∵如圖,在直角△ACD中,∠2=30°,
∴CD=AD,
∴BC=CD+BD=AD+AD=AD,S△DAC=ACCD=ACAD.
∴S△ABC=ACBC=ACAD=ACAD,
∴S△DAC:S△ABC=ACAD: ACAD=1:3.
故④正確.
綜上所述,正確的結(jié)論是:①②③④,共有4個.
故選D.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與軸交于點,與軸交于點,拋物線經(jīng)過、兩點.
求拋物線的解析式;
如圖,點是直線上方拋物線上的一動點,當(dāng)面積最大時,請求出點的坐標(biāo)和面積的最大值?
在的結(jié)論下,過點作軸的平行線交直線于點,連接,點是拋物線對稱軸上的動點,在拋物線上是否存在點,使得以、、、為頂點的四邊形是平行四邊形?如果存在,請直接寫出點的坐標(biāo);如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】知識再現(xiàn):
如果,,則線段的中點坐標(biāo)為;對于兩個一次函數(shù)和,若兩個一次函數(shù)圖象平行,則且;若兩個一次函數(shù)圖象垂直,則.
提醒:在下面這個相關(guān)問題中如果需要,你可以直接利用以上知識.
在平面直角坐標(biāo)系中,已知點,.
(1)如圖1,把直線向右平移使它經(jīng)過點,如果平移后的直線交軸于點,交x軸于點,請確定直線的解析式.
(2)如圖2,連接,求的長.
(3)已知點是直線上一個動點,以為對角線的四邊形是平行四邊形,當(dāng)取最小值時,請在圖3中畫出滿足條件的,并直接寫出此時點坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,對角線AC、BD相交于點O,點E、F是AD上的點,且AE=EF=FD.連接BE、BF,使它們分別與AO相交于點G、H.
(1)求EG:BG的值;
(2)求證:AG=OG;
(3)設(shè)AG=a,GH=b,HO=c,求a:b:c的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】運動時心跳速率通常和人的年齡有關(guān)。用a表示一個人的年齡,用b表示正常情況下這個人在運動時所能承受的每分鐘心跳的最高次數(shù),則.
(1)正常情況下,一個14歲的少年運動時所能承受的每分鐘心跳的最高次數(shù)是多少?
(2)當(dāng)一個人的年齡增加10歲時,他運動時承受的每分鐘心跳最高次數(shù)有何變化?變化次數(shù)是多少?
(3)一個45歲的人運動時,10秒心跳次數(shù)為22次,請問他有危險嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)的圖象交于A(m,6),B(3,n)兩點.
(1)求一次函數(shù)的解析式;
(2)根據(jù)圖象直接寫出的x的取值范圍;
(3)求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形的頂點、在坐標(biāo)軸上,點的坐標(biāo)為點從點出發(fā),在折線段上以每秒3個單位長度向終點勻速運動,點從點出發(fā),在折線段上以每秒4個單位長度向終點勻速運動.兩點同時出發(fā),當(dāng)其中一個點到達終點時,另一個點也停止運動,連接.設(shè)兩點的運動時間為,線段的長度的平方為,即(單位長度2).
(1)當(dāng)點運動到點時,__________,當(dāng)點運動到點時,__________;
(2)求關(guān)于的函數(shù)解析式,并直接寫出自變量的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為慶祝建軍90周年,某校計劃在五月份舉行“唱響軍歌”歌詠比賽,要確定一首喜歡人數(shù)最多的歌曲為每班必唱歌曲.為此提供代號為A,B,C,D四首備選曲目讓學(xué)生選擇,經(jīng)過抽樣調(diào)查,并將采集的數(shù)據(jù)繪制如下兩幅不完整的統(tǒng)計圖.請根據(jù)圖①,圖②所提供的信息,
解答下列問題:
(1)本次抽樣調(diào)查中,選擇曲目代號為A的學(xué)生占抽樣總數(shù)的百分比為 ;
(2)請將圖②補充完整;
(3)若該校共有1260名學(xué)生,根據(jù)抽樣調(diào)查的結(jié)果估計全校共有多少學(xué)生選擇喜歡人數(shù)最多的歌曲?(要有解答過程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在數(shù)軸上A,B兩點對應(yīng)的數(shù)分別是6,-6, (C與O重合,D點在數(shù)軸的正半軸上)
(1)如圖1,若CF 平分,則_________;
(2)如圖2,將沿數(shù)軸的正半軸向右平移t(0<t<3)個單位后,再繞點頂點逆時針旋轉(zhuǎn)30t度,作平分,此時記.
①當(dāng)t=1時, _______;
②猜想和的數(shù)量關(guān)系,并證明;
(3)如圖3,開始與重合,將沿數(shù)軸的正半軸向右平移t(0<t<3)個單位,再繞點頂點逆時針旋轉(zhuǎn)30t度,作平分,此時記,與此同時,將沿數(shù)軸的負(fù)半軸向左平移t(0<t<3)個單位,再繞點頂點順時針旋轉(zhuǎn)30t度,作平分,記,若與滿足,請直接寫出t的值為_________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com