【題目】如圖,在菱形ABCD中,AB=BD,點E、F分別是AB、AD上任意的點(不與端點重合),且AE=DF,連接BF與DE相交于點G,連接CG與BD相交于點H.給出如下幾個結(jié)論:①△AED≌△DFB;②S四邊形BCDG=;③若AF=2DF,則BG=6GF;④CG與BD一定不垂直;⑤∠BGE的大小為定值.
其中正確的結(jié)論個數(shù)為( )
A. 4 B. 3 C. 2 D. 1
【答案】B
【解析】試題分析:①∵ABCD為菱形,∴AB=AD,∵AB=BD,∴△ABD為等邊三角形,∴∠A=∠BDF=60°,又∵AE=DF,AD=BD,∴△AED≌△DFB,故本選項正確;
②∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°=∠BCD,即∠BGD+∠BCD=180°,∴點B、C、D、G四點共圓,∴∠BGC=∠BDC=60°,∠DGC=∠DBC=60°,∴∠BGC=∠DGC=60°,過點C作CM⊥GB于M,CN⊥GD于N(如圖1),則△CBM≌△CDN(AAS),∴S四邊形BCDG=S四邊形CMGN,S四邊形CMGN=2S△CMG,∵∠CGM=60°,∴GM=CG,CM=CG,∴S四邊形CMGN=2S△CMG=2××CG×CG=,故本選項錯誤;
③過點F作FP∥AE于P點(如圖2),∵AF=2FD,∴FP:AE=DF:DA=1:3,∵AE=DF,AB=AD,∴BE=2AE,∴FP:BE=FP: AE=1:6,∵FP∥AE,∴PF∥BE,∴FG:BG=FP:BE=1:6,即BG=6GF,故本選項正確;
④當點E,F分別是AB,AD中點時(如圖3),由(1)知,△ABD,△BDC為等邊三角形,∵點E,F分別是AB,AD中點,∴∠BDE=∠DBG=30°,∴DG=BG,在△GDC與△BGC中,∵DG=BG,CG=CG,CD=CB,∴△GDC≌△BGC,∴∠DCG=∠BCG,∴CH⊥BD,即CG⊥BD,故本選項錯誤;
⑤∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°,為定值,故本選項正確;
綜上所述,正確的結(jié)論有①③⑤,共3個,故選B.
科目:初中數(shù)學 來源: 題型:
【題目】圖1所示的遮陽傘,傘柄垂直于水平地面,其示意圖如圖2、當傘收緊時,點P與點A重合;當傘慢慢撐開時,動點P由A向B移動;當點P到達點B時,傘張得最開、已知傘在撐開的過程中,總有PM=PN=CM=CN=6.0分米,CE=CF=18.0分米,BC=2.0分米、設(shè)AP=x分米.
(1)求x的取值范圍;
(2)若∠CPN=60°,求x的值;
(3)設(shè)陽光直射下,傘下的陰影(假定為圓面)面積為y,求y關(guān)于x的關(guān)系式(結(jié)果保留π).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在ABCD中,對角線AC,BD交于點O,AB⊥AC,AB=1,BC=.
(1)求平行四邊形ABCD的面積S□ABCD;
(2)求對角線BD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】數(shù)學課上,張老師出示了如下框中的題目.
已知,在中,,,點為的中點,點和點分別是邊和上的點,且始終滿足,試確定與的大小關(guān)系.
小明與同桌小聰討論后,進行了如下解答:
(1)(特殊情況,探索結(jié)論)如圖1,若點與點重合時,點與點重合,容易得到與的大小關(guān)系.請你直接寫出結(jié)論:____________(填“”,“”或“”).
(2)(特例啟發(fā),解答題目)如圖2,若點不與點重合時,與的大小關(guān)系是:_________(填“”,“”或“”).理由如下:連結(jié),(請你完成剩下的解答過程)
(3)(拓展結(jié)論,設(shè)計新題)在中,,點為的中點,點和點分別是直線和直線上的點,且始終滿足,若,,求的長.(請你直接寫出結(jié)果)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在中,,, 是的角平分線.
(1)如圖 1,求證:;
(2)如圖 2,作的角平分線交線段于點,若,求的面積;
(3)如圖 3,過點作于點,點是線段上一點(不與 重合),以為一邊,在 的下方作,交延長線于點,試探究線段,與之間的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線y=x+2與坐標軸交于A、B兩點,點A在x軸上,點B在y軸上,C點的坐標為(1,0),拋物線y=ax2+bx+c經(jīng)過點A、B、C.
(1)求該拋物線的解析式;
(2)根據(jù)圖象直接寫出不等式ax2+(b﹣1)x+c>2的解集;
(3)點P是拋物線上一動點,且在直線AB上方,過點P作AB的垂線段,垂足為Q點.當PQ=時,求P點坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com