【題目】列方程解應(yīng)用題:第19屆亞洲運動會將于2022年9月10日至25日在杭州舉行,杭州奧體博覽城將成為杭州2022年亞運會的主場館,某工廠承包了主場館建設(shè)中某一零件的生產(chǎn)任務(wù),需要在規(guī)定時間內(nèi)生產(chǎn)24000個零件,若每天比原計劃多生產(chǎn)30個零件,則在規(guī)定時間內(nèi)可以多生產(chǎn)300個零件.
(1)求原計劃每天生產(chǎn)的零件個數(shù)和規(guī)定的天數(shù).
(2)為了提前完成生產(chǎn)任務(wù),工廠在安排原有工人按原計劃正常生產(chǎn)的同時,引進5組機器人生產(chǎn)流水線共同參與零件生產(chǎn),已知每組機器人生產(chǎn)流水線每天生產(chǎn)零件的個數(shù)比20個工人原計劃每天生產(chǎn)的零件總數(shù)還多,按此測算,恰好提前兩天完成24000個零件的生產(chǎn)任務(wù),求原計劃安排的工人人數(shù).
【答案】(1)原計劃每天生產(chǎn)的零件2400個,規(guī)定的天數(shù)是10天;(2)原計劃安排的工人人數(shù)480人.
【解析】
(1)根據(jù)題意可設(shè)原計劃每天生產(chǎn)的零件x個,根據(jù)時間是一定的,列出方程求得原計劃每天生產(chǎn)的零件個數(shù),再根據(jù)工作時間=工作總量÷工作效率,即可求得規(guī)定的天數(shù);
(2)設(shè)原計劃安排的工人人數(shù)為y人,根據(jù)等量關(guān)系:恰好提前兩天完成2400個零件的生產(chǎn)任務(wù),列出方程求解即可.
(1)解:設(shè)原計劃每天生產(chǎn)的零件x個,由題意得,
得:x=2400經(jīng)檢驗,x=2400是原方程的根,且符合題意.∴規(guī)定的天數(shù)為24000÷2400=10(天).
答:原計劃每天生產(chǎn)的零件2400個,規(guī)定的天數(shù)是10天;
(2)設(shè)原計劃安排的工人人數(shù)為y人,依題意有
[5×20×(1+20%)×+2400]×(10﹣2)=24000,解得y=480,
經(jīng)檢驗,y=480是原方程的根,且符合題意.答:原計劃安排的工人人數(shù)480人.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖所示,圖象過點(﹣1,0),對稱軸為直線x=2,下列結(jié)論:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c>0;(4)若點A(﹣3,y1)、點B(﹣,y2)、點C(,y3)在該函數(shù)圖象上,則y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的兩根為x1和x2,且x1<x2,則x1<﹣1<5<x2.其中正確的結(jié)論有( 。
A. 2個 B. 3個 C. 4個 D. 5個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在等邊中,點在邊上,點在的延長線上,(如圖1)
(1)求證:;
(2)點關(guān)于直線的對稱點為,連接,.
①依題意將圖2補全;
②證明:在點運動的過程中,始終有.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=kx+b(k≠0)的圖象與反比例函數(shù)y=(m≠0)的圖象交于第二、四象限內(nèi)的A、B兩點,與x軸交于點C,點A(﹣2,3),點B(6,n).
(1)求該反比例函數(shù)和一次函數(shù)的解析式;
(2)求△AOB的面積;
(3)若M(x1,y1),N(x2,y2)是反比例函數(shù)y=(m≠0)的圖象上的兩點,且x1<x2,y1<y2,指出點M、N各位于哪個象限.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題背景:如圖,點為線段外一動點,且,若,,連接,求的最大值.解決方法:以為邊作等邊,連接,推出,當(dāng)點在的延長線上時,線段取得最大值.
問題解決:如圖,點為線段外一動點,且,若,,連接,當(dāng)取得最大值時,的度數(shù)為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在等邊中,點,分別在邊,上.
(1)如圖,若,以為邊作等邊,交于點,連接.
求證:①;
②平分.
(2)如圖,若,作,交的延長線于點,求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠B=45°,∠C=30°,點D是BC上一點,連接AD,過點A作AG⊥AD,在AG上取點F,連接DF.延長DA至E,使AE=AF,連接EG,DG,且GE=DF.
(1)若AB=2,求BC的長;
(2)如圖1,當(dāng)點G在AC上時,求證:BD=CG;
(3)如圖2,當(dāng)點G在AC的垂直平分線上時,直接寫出的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,BC為⊙O的切線,D為⊙O上的一點,CD=CB,延長CD交BA的延長線于點E.
(1)求證:CD為⊙O的切線;
(2)若BD的弦心距OF=1,∠ABD=30°,求圖中陰影部分的面積.(結(jié)果保留π)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com