【題目】問題背景:如圖,點為線段外一動點,且,若,,連接,求的最大值.解決方法:以為邊作等邊,連接,推出,當點在的延長線上時,線段取得最大值.
問題解決:如圖,點為線段外一動點,且,若,,連接,當取得最大值時,的度數(shù)為_________.
【答案】
【解析】
以AC為直角邊,作等腰直角三角形CEA,CE =CA,∠ECA=90°,連接EB,利用SAS證出△ECB≌△ACD,從而得出EB=AD,然后根據(jù)兩點之間線段最短即可得出當AD取得最大值時,E、A、B三點共線,然后求出∠CAB的度數(shù),根據(jù)等邊對等角和三角形的內(nèi)角和定理即可求出∠ACB,從而求出∠ACD.
解:以AC為直角邊,作等腰直角三角形CEA,CE =CA,∠ECA=90°,連接EB
∵
∴∠ECA+∠ACB=∠BCD+∠ACB
∴∠ECB=∠ACD
在△ECB和△ACD中
∴△ECB≌△ACD
∴EB=AD
∴當AD取得最大值時,EB也取得最大值
根據(jù)兩點之間線段最短可知EB≤EA+EB,當且僅當E、A、B三點共線時取等號
即當AD取得最大值時,E、A、B三點共線,
∵△CEA為等腰直角三角形
∴∠CAE=45°
∴此時∠CAB=180°―CAE=135°
∵
∴∠ACB=∠ABC=(180°-∠CAB)=°
∴∠ACD=∠ACB+∠BCD=
故答案為:.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,中,厘米,厘米,點為的中點,如果點在線段上以厘米/秒的速度由點向點運動,同時,點在線段上由點向點運動.若點的運動速度為厘米/秒,則當與全等時,的值為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在ABCD中,點E、F分別在AB、CD上,且AE=CF.
(1)求證:△ADE≌△CBF;
(2)若DF=BF,求證:四邊形DEBF為菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法中正確的個數(shù)是( 。
①當a=﹣3時,分式的值是0
②若x2﹣2kx+9是完全平方式,則k=3
③工程建筑中經(jīng)常采用三角形的結(jié)構(gòu),這是利用三角形具有穩(wěn)定性的性質(zhì)
④在三角形內(nèi)部到三邊距離相等的點是三個內(nèi)角平分線的交點
⑤當x≠2時(x﹣2)0=1
⑥點(﹣2,3)關(guān)于y軸對稱的點的坐標是(﹣2,﹣3)
A. 1個B. 2個C. 3個D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】列方程解應(yīng)用題:第19屆亞洲運動會將于2022年9月10日至25日在杭州舉行,杭州奧體博覽城將成為杭州2022年亞運會的主場館,某工廠承包了主場館建設(shè)中某一零件的生產(chǎn)任務(wù),需要在規(guī)定時間內(nèi)生產(chǎn)24000個零件,若每天比原計劃多生產(chǎn)30個零件,則在規(guī)定時間內(nèi)可以多生產(chǎn)300個零件.
(1)求原計劃每天生產(chǎn)的零件個數(shù)和規(guī)定的天數(shù).
(2)為了提前完成生產(chǎn)任務(wù),工廠在安排原有工人按原計劃正常生產(chǎn)的同時,引進5組機器人生產(chǎn)流水線共同參與零件生產(chǎn),已知每組機器人生產(chǎn)流水線每天生產(chǎn)零件的個數(shù)比20個工人原計劃每天生產(chǎn)的零件總數(shù)還多,按此測算,恰好提前兩天完成24000個零件的生產(chǎn)任務(wù),求原計劃安排的工人人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】兩個工程隊共同參與一項筑路工程,若先由甲、乙兩隊合作天,剩下的工程再由乙隊單獨做天可以完成,共需施工費萬元;若由甲、乙合作完成此項工程共需天,共需施工費萬元.
(1)求乙隊單獨完成這項工程需多少天?
(2)甲、乙兩隊每天的施工費各為多少萬元?
(3)若工程預(yù)算的總費用不超過萬元,則乙隊最少施工多少天?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A、B兩點在正方形網(wǎng)格的格點上,每個方格都是邊長為1的正方形.點C也在格點上,且△ABC為等腰三角形,則符合條件的點C有( )個.
A.3B.5C.8D.10
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標系中,矩形ABCD的邊AB:BC=3:2,點A(3,0),B(0,6)分別在x軸,y軸上,反比例函數(shù)(x>0)的圖像經(jīng)過點D,則值為( )
A. ﹣14 B. 14 C. 7 D. ﹣7
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,點D,E,F分別在邊BC,AC,AB上,且BD=CE,DC=BF,連結(jié)DE,EF,DF,∠1=60°
(1)求證:△BDF≌△CED.
(2)判斷△ABC的形狀,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com