【題目】梧桐山是深圳最高的山峰,某校綜合實(shí)踐活動(dòng)小組要測(cè)量主山峰的高度,先在梧桐山對(duì)面廣場(chǎng)的A處測(cè)得峰頂”C的仰角為45o此時(shí),他們剛好與峰底D在同一水平線上。然后沿著坡度為30o的斜坡正對(duì)著主山峰前行700米,到達(dá)B處,再測(cè)得峰頂”C的仰角為60o , 如圖,根據(jù)以上條件求出主山峰的高度?(測(cè)角儀的高度忽略不計(jì),結(jié)果精確到1米.參考數(shù)據(jù):(1.4,1.7)

【答案】一炷香的高度約為150米.

【解析】

首先過點(diǎn)BBFDC于點(diǎn)F,過點(diǎn)BBEAD于點(diǎn)E,可得四邊形BEDF是矩形,然后在RtABE中,由三角函數(shù)的性質(zhì),可求得AEBE的長(zhǎng),再設(shè)BF=x米,利用三角函數(shù)的知識(shí)即可求得方程55+x=x+55,繼而可求得答案.

過點(diǎn)BBFDN于點(diǎn)F,過點(diǎn)BBEAD于點(diǎn)E

∵∠D=90°,

∴四邊形BEDF是矩形,

BE=DF,BF=DE,

RtABE中,AE=ABcos30°=110×=55(米),BE=ABsin30°=×110=55(米);

設(shè)BF=x米,則AD=AE+ED=(55+x)(米),

RtBFN中,CF=BFtan60°=x(米),

DC=DF+CF=(55+x)(米),

∵∠CAD=45°

AD=DN,

55+x=x+55,

解得:x=55

DN=55+x≈150(米).

答:一炷香的高度約為150米.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】等腰三角形一條邊的邊長(zhǎng)為3,它的另兩條邊的邊長(zhǎng)是關(guān)于x的一元二次方程x2﹣12x+k=0的兩個(gè)根,則k的值是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列幾何體是由4個(gè)相同的小正方體搭成的,其中主視圖和左視圖相同的是( 。

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,ABC中,點(diǎn)D在線段AB上,點(diǎn)E在線段CB延長(zhǎng)線上,且BE=CD,EPAC交直線CD于點(diǎn)P,交直線AB于點(diǎn)F,ADP=ACB.

(1)圖1中是否存在與AC相等的線段?若存在,請(qǐng)找出,并加以證明,若不存在,說明理由;

(2)若將點(diǎn)D在線段AB上,點(diǎn)E在線段CB延長(zhǎng)線上改為點(diǎn)D在線段BA延長(zhǎng)線上,點(diǎn)E在線段BC延長(zhǎng)線上,其他條件不變(如圖2).當(dāng)∠ABC=90°,BAC=60°,AB=2時(shí),求線段PE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題10分)如圖,在△ABC中,AB=AC,以AC為直徑作⊙O交BC于點(diǎn)D,過點(diǎn)D作⊙O的切線,交AB于點(diǎn)E,交CA的延長(zhǎng)線于點(diǎn)F.

(1)求證:FE⊥AB;

(2)當(dāng)EF=6,=時(shí),求DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校數(shù)學(xué)興趣小組開展了一次課外活動(dòng),過程如下:如圖①,正方形ABCD中,AB=4,將三角板放在正方形ABCD上,使三角板的直角頂點(diǎn)與D點(diǎn)重合.三角板的一邊交AB于點(diǎn)P,另一邊交BC的延長(zhǎng)線于點(diǎn)Q

(1)求證:AP=CQ;

(2)如圖②,小明在圖1的基礎(chǔ)上作∠PDQ的平分線DEBC于點(diǎn)E,連接PE,他發(fā)現(xiàn)PEQE存在一定的數(shù)量關(guān)系,請(qǐng)猜測(cè)他的結(jié)論并予以證明;

(3)在(2)的條件下,若AP=1,求PE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=ax2+bx-3經(jīng)過(-1,0),(3,0)兩點(diǎn),與y軸交于點(diǎn)C,直線y=kx與拋物線交于A,B兩點(diǎn).

(1)寫出點(diǎn)C的坐標(biāo)并求出此拋物線的解析式;

(2)當(dāng)原點(diǎn)O為線段AB的中點(diǎn)時(shí),求k的值及A,B兩點(diǎn)的坐標(biāo);

(3)是否存在實(shí)數(shù)k使得△ABC的面積為?若存在,求出k的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,MN是半徑為2的⊙O的直徑,點(diǎn)A在⊙O上,∠AMN=30°,點(diǎn)B為劣弧AN的中點(diǎn).點(diǎn)P是直徑MN上一動(dòng)點(diǎn),則PAPB的最小值為(  )

A. 4 B. 2 C. 4 D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,E、F分別是 四邊形ABCD的邊AB、CD上的點(diǎn),AF與DE相交于點(diǎn)P,BF與CE相交于點(diǎn)Q,記S1=S△APD,S2=S△BQC,四邊形EQFP的面積為S.

(1)若四邊形ABCD為平行四邊形,如圖1,求證:S=S1+S2;

(2)若四邊形ABCD為一般凸多邊形,AB∥CD,如圖2,求證:S=S1+S2

查看答案和解析>>

同步練習(xí)冊(cè)答案