【題目】如圖,半徑為3的⊙O分別與x軸,y軸交于AD兩點(diǎn),⊙O上兩個(gè)動(dòng)點(diǎn)BC,使∠BAC45°恒成立,設(shè)△ABC的重心為G,則DG的最小值是_______

【答案】

【解析】

連接AG并延長,交BC于點(diǎn)F,由三角形ABC的重心為G,可知FBC的中點(diǎn),再由垂徑定理可知OF⊥BC,從而可求得OF的長;在AO上取點(diǎn)E,使AE=2EO,連接GE,可判定三角形AGE相似于三角形AFO,由相似三角形的性質(zhì)列出比例式,求得GE的長,進(jìn)而可得點(diǎn)E的坐標(biāo),利用勾股定理求出DE的長,根據(jù)G在以E為圓心,2為半徑的圓上運(yùn)動(dòng),可知DG的最小值為DE的長減去,計(jì)算即可.

解:連接AG并延長,交BC于點(diǎn)F.

∵△ABC的重心為G

FBC的中點(diǎn),

OFBC

∵∠BAC=45°

BOF=45°

OBF=45°

OF=BF=FC=

∵△ABC的重心為G,

AG=AF.

AO上取點(diǎn)E,使AE=AO,連接GE

∴E(1,0

∵.

∴△AGE∽△AFO,

∴GE=

G在以E為圓心,為半徑的圓上運(yùn)動(dòng)

DE=

DG的最小值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列圖形都是由大小相同的小正方形按一定規(guī)律組成的,其中第1個(gè)圖形的周長為4,第2個(gè)圖形的周長為10,第3個(gè)圖形的周長為18,按此規(guī)律排列,回答下列問題:

(1)5個(gè)圖形的周長為 ;

(2)個(gè)圖形的周長為

(3)若第個(gè)圖形的周長為180,則

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】行千里致廣大是重慶人民向大家發(fā)出的旅游邀請.如圖,某建筑物上有一個(gè)旅游宣傳語廣告牌,小亮在A處測得該廣告牌頂部E處的仰角為45°,然后沿坡比為512的斜坡AC行走65米至C處,在C處測得廣告牌底部F處的仰角為76°,已知CD與水平面AB平行,EGCD垂直,且EF2米,則廣告牌頂部ECD的距離EG為(  )(參考數(shù)據(jù):sin76°≈097,cos76°≈024tan76°≈4

A.46B.44C.71D.69

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在RtABC中,∠B90°AB4,BC2,點(diǎn)D、E分別是邊BC、AC的中點(diǎn),連接DE.將△CDE繞點(diǎn)C逆時(shí)針方向旋轉(zhuǎn),記旋轉(zhuǎn)角為α

1)問題發(fā)現(xiàn)

①當(dāng)α時(shí),_______;

②當(dāng)α180°時(shí),______

2)拓展探究

試判斷:當(dāng)0°≤α360°時(shí),的大小有無變化?請僅就圖2的情形給出證明.

3)問題解決

CDE繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)至A、BE三點(diǎn)在同一條直線上時(shí),求線段BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中,上一點(diǎn),過三點(diǎn)的,過點(diǎn),交于點(diǎn)

1)若中點(diǎn),連結(jié),求證:四邊形是平行四邊形

2)連結(jié),.當(dāng),且,求線段的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,RtABC的斜邊AB在y軸上,邊AC與x軸交于點(diǎn)D,AE平分BAC交邊BC于點(diǎn)E,經(jīng)過點(diǎn)A、D、E的圓的圓心F恰好在y軸上,F與y軸相交于另一點(diǎn)G.

(1)求證:BC是F的切線;

(2)若點(diǎn)A、D的坐標(biāo)分別為A(0,﹣1),D(2,0),求F的半徑;

(3)試探究線段AG、AD、CD三者之間滿足的等量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩車分別從A、B兩地同時(shí)出發(fā),在同一條公路上,勻速行駛,相向而行,到兩車相遇時(shí)停止.甲車行駛一段時(shí)間后,因故停車0.5小時(shí),故障解除后,繼續(xù)以原速向B地行駛,兩車之間的路程y(千米)與出發(fā)后所用時(shí)間x(小時(shí))之間的函數(shù)關(guān)系如圖所示.

1)求甲、乙兩車行駛的速度V、V.

2)求m的值.

3)若甲車沒有故障停車,求可以提前多長時(shí)間兩車相遇.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市水果批發(fā)市場內(nèi)有一種水果,保鮮期一周,如果冷藏,可以延長保鮮時(shí)間,但每天仍有一定數(shù)量的這種水果變質(zhì),假設(shè)這種水果保鮮期內(nèi)的個(gè)體重量基本保持不變,F(xiàn)有一個(gè)體戶,按市場價(jià)收購了這種水果200千克放在冷藏室內(nèi),此時(shí)市場價(jià)為每千克2元,據(jù)測算,此后這種鮮水果每千克的價(jià)格每天可上漲0.2元,但存放一天需各種費(fèi)用20元,日平均每天還有1千克變質(zhì)丟棄.

1)設(shè)天后每千克鮮水果的市場價(jià)元,寫出關(guān)于的函數(shù)關(guān)系式;

2)若存放天后將鮮水果一次性出售,設(shè)鮮水果的銷售總金額為元,寫出關(guān)于的函數(shù)關(guān)系式;

3)該個(gè)體戶將這批水果存放多少天后出售,可獲最大利潤?最大利潤是多少?

(本題不要求寫出自變量的取值范圍)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)問題發(fā)現(xiàn):如圖(1),在OABOCD中,OAOB,OCOD,∠AOB=∠COD36°,連接ACBD交于點(diǎn)M.①的值為   ;②∠AMB的度數(shù)為   ;

2)類比探究 :如圖(2),在OABOCD中,∠AOB=∠COD90°,∠OAB=∠OCD30°,連接AC,交BD的延長線于點(diǎn)M.請計(jì)算的值及∠AMB的度數(shù).

3)拓展延伸:在(2)的條件下,將OCD繞點(diǎn)O在平面內(nèi)旋轉(zhuǎn),AC,BD所在直線交于點(diǎn)M.若OD1OB,請直接寫出當(dāng)點(diǎn)C與點(diǎn)M重合時(shí)AC的長.

查看答案和解析>>

同步練習(xí)冊答案