等腰直角△ABC中,∠BAC=90°,AD是中線,點(diǎn)P是重心.如果PD=1,那么BC邊的長為________.

6
分析:先根據(jù)三角形重心的性質(zhì)得出AD=3,再根據(jù)等腰直角三角形的性質(zhì)得出BC=2AD,即可求解.
解答:解:如圖,∵點(diǎn)P是△ABC的重心,
∴AP=2PD=2,
∴AD=AP+PD=3.
∵等腰直角△ABC中,∠BAC=90°,AD是中線,
∴BC=2BD,AD=BD,
∴BC=2AD=6.
故答案為6.
點(diǎn)評:此題考查了重心的概念和性質(zhì):三角形的重心是三角形三條中線的交點(diǎn),且重心到頂點(diǎn)的距離是它到對邊中點(diǎn)的距離的2倍,同時(shí)考查了等腰直角三角形的性質(zhì).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

在等腰直角△ABC中,∠C=90°,BC=8cm,如果以AC的中點(diǎn)O為旋轉(zhuǎn)中心,旋轉(zhuǎn)180°,點(diǎn)B落在B′處,那么點(diǎn)B與點(diǎn)B′的長為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•廣東模擬)如圖,在等腰直角△ABC中∠C=90°,AD平分∠CAB交BC于D,DE⊥AB于E.若AC=10cm,求△DEB的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,在等腰直角△ABC中,∠BAC=90°,AB=AC=2,點(diǎn)E是BC邊上一點(diǎn),∠DEF=45°且角的兩邊分別與邊AB,射線CA交于點(diǎn)P,Q.
(1)如圖2,若點(diǎn)E為BC中點(diǎn),將∠DEF繞著點(diǎn)E逆時(shí)針旋轉(zhuǎn),DE與邊AB交于點(diǎn)P,EF與CA的延長線交于點(diǎn)Q.設(shè)BP為x,CQ為y,試求y與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)如圖3,點(diǎn)E在邊BC上沿B到C的方向運(yùn)動(不與B,C重合),且DE始終經(jīng)過點(diǎn)A,EF與邊AC交于Q點(diǎn).探究:在∠DEF運(yùn)動過程中,△AEQ能否構(gòu)成等腰三角形,若能,求出BE的長;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在等腰直角△ABC中,AD是斜邊BC上的高,AB=8,則AD2=
32
32

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在等腰直角△ABC中,∠ABC=90°,D為AC的中點(diǎn),過D點(diǎn)作DE⊥DF,交AB于E,交BC于F.
求證:∠DEF=45°.

查看答案和解析>>

同步練習(xí)冊答案