【題目】有這樣一個問題:探究函數(shù)的圖象與性質.小懷根據(jù)學習函數(shù)的經驗,對函數(shù)的圖象與性質進行了探究.下面是小懷的探究過程,請補充完成:
(1)函數(shù)的自變量x的取值范圍是 ;
(2)列出y與x的幾組對應值.請直接寫出m的值,m= ;
(3)請在平面直角坐標系xOy中,描出表中各對對應值為坐標的點,并畫出該函數(shù)的圖象;
(4)結合函數(shù)的圖象,寫出函數(shù)的一條性質.
x | … | ﹣5 | ﹣4 | ﹣3 | ﹣2 | ﹣ | ﹣ | 0 | 1 | 2 | m | 4 | 5 | … |
y | … | 2 | 3 | ﹣1 | 0 | … |
【答案】(1)x≠﹣1;(2)m=3;(3)畫圖見解析;(4)觀察函數(shù)圖象,發(fā)現(xiàn):函數(shù)在x<﹣1和x>﹣1上均單調遞增.
【解析】
(1)根據(jù)分母非零即可得出x+1≠0,解之即可得出自變量x的取值范圍;
(2)將y代入函數(shù)解析式中求出x值即可;
(3)描點、連線畫出函數(shù)圖象;
(4)觀察函數(shù)圖象,寫出函數(shù)的一條性質即可.
(1)∵x+1≠0,∴x≠﹣1.
故答案為:x≠﹣1.
(2)當y時,x=3.
故答案為:3.
(3)描點、連線畫出圖象如圖所示.
(4)觀察函數(shù)圖象,發(fā)現(xiàn):函數(shù)在x<﹣1和x>﹣1上均單調遞增.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的弦,OP⊥OA交AB于點P,過點B的直線交OP的延長線于點C,且CP=CB.
(1)求證:BC是⊙O的切線;
(2)若⊙O的半徑為,OP=1,求BC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,第一個正方形ABCD的位置如圖所示,點A的坐標為(2,0),點D的坐標為(0,4).延長CB交x軸于點A1,作第二個正方形A1B1C1C;延長C1B1交x軸于點A2,作第三個正方形A2B2C2C1,…,按這樣的規(guī)律進行下去,第2016個正方形的面積為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,已知為正方形的中心,分別延長到點, 到點,使, ,連結,將△繞點逆時針旋轉角得到△(如圖2).連結、.
(Ⅰ)探究與的數(shù)量關系,并給予證明;
(Ⅱ)當, 時,求:
①的度數(shù);
②的長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個不透明的口袋里有 個除顏色外都相同的球,其中有 個紅球, 個黃球.
(1) 若從中隨意摸出一個球,求摸出紅球的可能性;
(2) 若要使從中隨意摸出一個球是紅球的可能性為 ,求袋子中需再加入幾個紅球?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某測量隊在山腳A處測得山上樹頂仰角為45°(如圖),測量隊在山坡上前進600米到D處,再測得樹頂?shù)难鼋菫?/span>60°,已知這段山坡的坡角為30°,如果樹高為15米,則山高為( 。ň_到1米, =1.732).
A. 585米 B. 1014米 C. 805米 D. 820米
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的邊長為4,點E為AD的延長線上一點,且DE=DC,點P為邊AD上一動點,且PC⊥PG,PG=PC,點F為EG的中點.當點P從D點運動到A點時,則CF的最小值為___________
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】熱氣球的探測器顯示,從熱氣球底部A處看一棟高樓頂部的俯角為30°,看這棟樓底部的俯角為60°,熱氣球A處與地面距離為420米,求這棟樓的高度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】四邊形ABCD是正方形,E、F分別是DC和CB的延長線上的點,且DE=BF,連接AE、AF、EF.
(1)求證:△ADE≌△ABF;
(2)填空:△ABF可以由△ADE繞旋轉中心 點,按順時針方向旋轉 度得到;
(3)若BC=8,DE=6,求△AEF的面積.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com