精英家教網 > 初中數學 > 題目詳情

【題目】如圖,先有一張矩形紙片分別在矩形的邊上,將矩形紙片沿直線MN折疊,使點落在矩形的邊上,記為點,點落在處,連接,交于點,連接.下列結論:

②四邊形是菱形;

重合時,;

的面積的取值范圍是

其中正確的是_____(把正確結論的序號都填上).

【答案】②③

【解析】

先判斷出四邊形是平行四邊形,再根據翻折的性質可得,然后根據鄰邊相等的平行四邊形是菱形證明,判斷出②正確;假設,進而得,這個不一定成立,判斷①錯誤;點與點重合時,設,表示出,利用勾股定理列出方程求解得的值,進而用勾股定理求得,判斷出③正確;當點時,求得四邊形的最小面積,進而得的最小值,當重合時,的值最大,求得最大值便可.

如圖1,

四邊形是平行四邊形,

四邊形是菱形,故②正確;

,則

,這個不一定成立,

故①錯誤;

與點重合時,如圖2,

解得

,

,

,

,

故③正確;

過點時,如圖3,

此時,最短,四邊形的面積最小,則最小為,

點與點重合時,最長,四邊形的面積最大,則最大為,

故④錯誤.

故答案為:②③.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在ABCD中,E為對角線AC上一點,連接DE,作EFDE,交AD于點F,GAD邊上一點,且ABAG,連接GE

1)如圖1,若點GDF的中點,AF2,EG4,∠B60°,求AC的長;

2)如圖2,連接CGDE于點H,若EGCD,∠ACB=∠DCG,求證:∠ECG2AEF

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,正方形ABCD、等腰RtBPQ的頂點P在對角線AC上(點PA、C不重合),QPBC交于E,QP延長線與AD交于點F,連接CQ.

(1)①求證:AP=CQ;②求證:PA2=AFAD;

(2)若AP:PC=1:3,求tanCBQ.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,單位長度為1的網格坐標系中,一次函數 與坐標軸交于A、B兩點,反比例函數x0)經過一次函數上一點C2,a).

1)求反比例函數解析式,并用平滑曲線描繪出反比例函數圖像;

2)依據圖像直接寫出當時不等式的解集;

3)若反比例函數與一次函數交于C、D兩點,使用直尺與2B鉛筆構造以C、D為頂點的矩形,且使得矩形的面積為10

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在等腰△ABC中,ACBC,以BC為直徑的O與底邊AB交于點D,過DO的切線交AC于點E

1)證明:DEAC

2)若BC8AD6,求AE的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+c的圖象經過點C,交x軸于點A(﹣1,0)、B4,0)(A點在B點左側),頂點為D

1)求拋物線的解析式;

2)將△ABC沿直線BC對折,點A的對稱點為A′,試求A′的坐標;

3)拋物線的對稱軸上是否存在點P,使∠BPC=∠BAC?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,以點A為圓心,AB長為半徑畫弧交AD于點F,再分別以點B、F為圓心,大于BF的長為半徑畫弧,兩弧交于點P;連接AP并延長交BC于點E,連接EF.若四邊形ABEF的周長為12,∠C60°,則四邊形ABEF的面積是( 。

A.9B.12C.D.6

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】隨著2020年重慶中招體育考試日益臨近,初三同學堅持每天鍛煉的熱情也愈發(fā)高漲,某班甲、乙兩名同學相約利用課余時間進行跳繩鍛煉.在一次鍛煉中,甲同學完成跳繩180個,乙同學完成跳繩200個,但乙同學所用時間比甲同學少10秒,兩入計算后得知:甲同學每秒比乙同學少跳繩1個,則本次鍛煉中甲同學每秒跳繩多少個?設甲同學每秒跳繩x個,則由題意可列方程為(

A.10B.10

C.10D.10

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,點A是反比例函數y=圖象在第一象限上的一點,連結AO并延長交圖象的另一分支于點B,延長BA至點C,過點CCDx軸,垂足為D,交反比例函數圖象于點E.若,△BDC的面積為6,則k=_____

查看答案和解析>>

同步練習冊答案