【題目】如圖,先有一張矩形紙片點分別在矩形的邊上,將矩形紙片沿直線MN折疊,使點落在矩形的邊上,記為點,點落在處,連接,交于點,連接.下列結論:
②四邊形是菱形;
③重合時,;
④的面積的取值范圍是
其中正確的是_____(把正確結論的序號都填上).
【答案】②③
【解析】
先判斷出四邊形是平行四邊形,再根據翻折的性質可得,然后根據鄰邊相等的平行四邊形是菱形證明,判斷出②正確;假設得,進而得,這個不一定成立,判斷①錯誤;點與點重合時,設,表示出,利用勾股定理列出方程求解得的值,進而用勾股定理求得,判斷出③正確;當過點時,求得四邊形的最小面積,進而得的最小值,當與重合時,的值最大,求得最大值便可.
如圖1,
四邊形是平行四邊形,
四邊形是菱形,故②正確;
若,則
,這個不一定成立,
故①錯誤;
點與點重合時,如圖2,
設則
在
即
解得
,
,
,
,
故③正確;
當過點時,如圖3,
此時,最短,四邊形的面積最小,則最小為,
當點與點重合時,最長,四邊形的面積最大,則最大為,
,
故④錯誤.
故答案為:②③.
科目:初中數學 來源: 題型:
【題目】如圖,在□ABCD中,E為對角線AC上一點,連接DE,作EF⊥DE,交AD于點F,G為AD邊上一點,且AB=AG,連接GE.
(1)如圖1,若點G為DF的中點,AF=2,EG=4,∠B=60°,求AC的長;
(2)如圖2,連接CG交DE于點H,若EG∥CD,∠ACB=∠DCG,求證:∠ECG=2∠AEF.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正方形ABCD、等腰Rt△BPQ的頂點P在對角線AC上(點P與A、C不重合),QP與BC交于E,QP延長線與AD交于點F,連接CQ.
(1)①求證:AP=CQ;②求證:PA2=AFAD;
(2)若AP:PC=1:3,求tan∠CBQ.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,單位長度為1的網格坐標系中,一次函數 與坐標軸交于A、B兩點,反比例函數(x>0)經過一次函數上一點C(2,a).
(1)求反比例函數解析式,并用平滑曲線描繪出反比例函數圖像;
(2)依據圖像直接寫出當時不等式的解集;
(3)若反比例函數與一次函數交于C、D兩點,使用直尺與2B鉛筆構造以C、D為頂點的矩形,且使得矩形的面積為10.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在等腰△ABC中,AC=BC,以BC為直徑的⊙O與底邊AB交于點D,過D作⊙O的切線交AC于點E.
(1)證明:DE⊥AC.
(2)若BC=8,AD=6,求AE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c的圖象經過點C,交x軸于點A(﹣1,0)、B(4,0)(A點在B點左側),頂點為D.
(1)求拋物線的解析式;
(2)將△ABC沿直線BC對折,點A的對稱點為A′,試求A′的坐標;
(3)拋物線的對稱軸上是否存在點P,使∠BPC=∠BAC?若存在,求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,以點A為圓心,AB長為半徑畫弧交AD于點F,再分別以點B、F為圓心,大于BF的長為半徑畫弧,兩弧交于點P;連接AP并延長交BC于點E,連接EF.若四邊形ABEF的周長為12,∠C=60°,則四邊形ABEF的面積是( 。
A.9B.12C.D.6
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】隨著2020年重慶中招體育考試日益臨近,初三同學堅持每天鍛煉的熱情也愈發(fā)高漲,某班甲、乙兩名同學相約利用課余時間進行跳繩鍛煉.在一次鍛煉中,甲同學完成跳繩180個,乙同學完成跳繩200個,但乙同學所用時間比甲同學少10秒,兩入計算后得知:甲同學每秒比乙同學少跳繩1個,則本次鍛煉中甲同學每秒跳繩多少個?設甲同學每秒跳繩x個,則由題意可列方程為( )
A.﹣=10B.﹣=10
C.﹣=10D.﹣=10
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點A是反比例函數y=圖象在第一象限上的一點,連結AO并延長交圖象的另一分支于點B,延長BA至點C,過點C作CD⊥x軸,垂足為D,交反比例函數圖象于點E.若,△BDC的面積為6,則k=_____.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com