【題目】ABC中,AB=AC.

1)如圖1,如果∠BAD=30°ADBC上的高,AD=AE,則∠EDC=_____度;

2)如圖2,如果∠BAD=40°,ADBC上的高,AD=AE,則∠EDC=_______度;

3)思考:通過(guò)以上兩題,你發(fā)現(xiàn)∠BAD與∠EDC之間有什么關(guān)系?請(qǐng)用式子表示:____________________.

4)如圖3,如果AD不是BC上的高,AD=AE,是否仍有上述關(guān)系?如有,請(qǐng)你寫出來(lái),并說(shuō)明理由.

【答案】115;(220;(3EDC=BAD或者∠BAD =2EDC;(4)有,理由見解析.

【解析】試題分析:1)等腰三角形三線合一,所以∠DAE=30°,又因?yàn)?/span>AD=AE,所以∠ADE=AED=75°,所以∠DEC=15°;

2)同理,易證∠ADE=70°,所以∠DEC=20°;

3)通過(guò)(1)(2)題的結(jié)論可知,∠BAD=2EDC(或∠EDC=BAD).

4)由于AD=AE,所以∠ADE=AED,根據(jù)已知,易證∠BAD+B=2EDC+C,而B=C,所以∠BAD=2EDC

試題解析:(1)∵在ABC中,AB=ACADBC上的高,

∴∠BAD=CAD,

∵∠BAD=30°

∴∠BAD=CAD=30°,

AD=AE,

∴∠ADE=AED=75°

∴∠EDC=15°.

(2)∵在ABC中,AB=AC,ADBC上的高,

∴∠BAD=CAD,

∵∠BAD=40°,

∴∠BAD=CAD=40°,

AD=AE,

∴∠ADE=AED=70°

∴∠EDC=20°.

(3)BAD=2EDC(或∠EDC=BAD)

(4)仍成立,理由如下

AD=AE∴∠ADE=AED,

∴∠BAD+B=ADC=ADE+EDC=AED+EDC=(EDC+C)+EDC=2EDC+C

又∵AB=AC,

∴∠B=C

∴∠BAD=2EDC.

故分別填15°,20°,EDC=BAD

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=ax2+2ax+c的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊)AB=4,與y軸交于點(diǎn)C,OC=OA,點(diǎn)D為拋物線的頂點(diǎn).

(1)求拋物線的解析式;

(2)點(diǎn)M(m,0)為線段AB上一點(diǎn)(點(diǎn)M不與點(diǎn)A、B重合),過(guò)點(diǎn)M作x軸的垂線,與直線AC交于點(diǎn)E,與拋物線交于點(diǎn)P,過(guò)點(diǎn)P作PQ∥AB交拋物線于點(diǎn)Q,過(guò)點(diǎn)Q作QN⊥x軸于點(diǎn)N,可得矩形PQNM,如圖1,點(diǎn)P在點(diǎn)Q左邊,當(dāng)矩形PQNM的周長(zhǎng)最大時(shí),求m的值,并求出此時(shí)的△AEM的面積;

(3)已知H(0,﹣1),點(diǎn)G在拋物線上,連HG,直線HG⊥CF,垂足為F,若BF=BC,求點(diǎn)G的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)為了了解學(xué)生每天完成家庭作業(yè)所用時(shí)間的情況,從每班抽取相同數(shù)量的學(xué)生進(jìn)行調(diào)查,并將所得數(shù)據(jù)進(jìn)行整理,制成條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖,如圖所示:

(1)補(bǔ)全條形統(tǒng)計(jì)圖;

(2)求扇形統(tǒng)計(jì)圖中扇形D的圓心角的度數(shù);

(3)若該中學(xué)有2000名學(xué)生,請(qǐng)估計(jì)其中有多少名學(xué)生能在1.5 h內(nèi)完成家庭作業(yè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在⊙O中,AB是⊙O的直徑,AB=10, ,點(diǎn)E是點(diǎn)D關(guān)于AB的對(duì)稱點(diǎn),MAB上的一動(dòng)點(diǎn),下列結(jié)論:①∠BOE=60°②∠CED=AOD;DMCE;CM+DM的最小值是10,其中正確的序號(hào)是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小鵬學(xué)完解直角三角形知識(shí)后,給同桌小艷出了一道題:如圖所示,把一張長(zhǎng)方形卡片ABCD放在每格寬度都為6mm的橫格紙中,恰好四個(gè)頂點(diǎn)都在橫格線上,已知a=36°,求長(zhǎng)方形卡片的周長(zhǎng).請(qǐng)你幫小艷解答這道題.(精確到1mm)(參考數(shù)據(jù):sin36°≈0.60,cos36°≈0.80,tan36°≈0.75

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】RtABC中,∠BCA90°,∠A<∠ABC,DAC邊上一點(diǎn),且DADBOAB的中點(diǎn),CE是△BCD的中線.

(1)如圖a,連接OC,請(qǐng)直接寫出∠OCE和∠OAC的數(shù)量關(guān)系:   ;

(2)點(diǎn)M是射線EC上的一個(gè)動(dòng)點(diǎn),將射線OM繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)得射線ON,使∠MON=∠ADBON與射線CA交于點(diǎn)N

①如圖b,猜想并證明線段OM和線段ON之間的數(shù)量關(guān)系;

②若∠BAC30°,BCm,當(dāng)∠AON15°時(shí),請(qǐng)直接寫出線段ME的長(zhǎng)度(用含m的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】519,中國(guó)首個(gè)旅游日正式啟動(dòng)某校組織了由八年級(jí)800名學(xué)生參加的旅游地理知識(shí)競(jìng)賽.李老師為了了解對(duì)旅游地理知識(shí)的掌握情況從中隨機(jī)抽取了部分同學(xué)的成績(jī)作為樣本,把成績(jī)按優(yōu)秀、良好、及格、不及格4個(gè)級(jí)別進(jìn)行統(tǒng)計(jì),并繪制成了如圖所示的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖部分信息未給出).

請(qǐng)根據(jù)以上提供的信息解答下列問(wèn)題

1求被抽取的部分學(xué)生的人數(shù);

2請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖,并求出扇形統(tǒng)計(jì)圖中表示及格的扇形的圓心角度數(shù)

3請(qǐng)估計(jì)八年級(jí)的800名學(xué)生中達(dá)到良好和優(yōu)秀的總?cè)藬?shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)如圖,在矩形中,.求:①矩形的面積;②對(duì)角線的長(zhǎng).

2)如圖,在菱形中,,,,為垂足.

①求證:

②若,求的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】同學(xué)們,在初一學(xué)習(xí)正多邊形和圓這節(jié)課時(shí),我們就學(xué)習(xí)過(guò)四邊形的內(nèi)角和等于360°.下面我們就在四邊形中來(lái)研究幾個(gè)問(wèn)題:

(1)問(wèn)題背景:

如圖1:在四邊形ABCD中,ABAD,∠BAD120°,∠B=∠ADC90°,E、F分別是BCCD上的點(diǎn),且∠EAF60°,探究圖中線段BE、EF、FD之間的數(shù)量關(guān)系.

小王同學(xué)探究此問(wèn)題的方法是,延長(zhǎng)FD到點(diǎn)G,使DGBE.連結(jié)AG,先證明△ABE≌△ADG,再證明△AEF≌△AGF,可得出結(jié)論,他的結(jié)論應(yīng)是______;

(2)探索延伸:

如圖2,若在四邊形ABCD中,ABAD,∠B+D180°,EF分別是BC、CD上的點(diǎn),且∠EAFBAD,上述結(jié)論是否仍成立,并說(shuō)明理由;

(3)實(shí)際應(yīng)用:

如圖3,在某次軍事演習(xí)中,艦艇甲在指揮中心(點(diǎn)O)北偏西30°A處,艦艇乙在指揮中心南偏東70°B處,并且兩艦艇到指揮中心的距離相等.接到行動(dòng)指令后,艦艇甲向正東方向以45海里/時(shí)的速度前進(jìn),同時(shí),艦艇乙沿北偏西50°的方向以60海里/時(shí)的速度前進(jìn),2小時(shí)后,指揮中心觀察到甲、乙兩艦艇分別到達(dá)E、F處,且兩艦艇之間的夾角為70°,試求此時(shí)兩艦艇之間的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案