精英家教網 > 初中數學 > 題目詳情

【題目】水滴進的玻璃容器如下圖所示(水滴的速度是相同的),那么水的高度h是如何隨著時間t變化的,請選擇匹配的示意圖與容器.

(A)——(   ) (B)——(   )

(C)——(   ) (D)——(   )

【答案】(A)——(3),(B)——(2)(C)——(4) , (D)——(1)

【解析】

根據各圖中水高度與時間的關系進行判斷即可.

AB的直徑上下一致,所以水的高度和時間之間對應的示意圖為(2)、(3),由于A的直徑小,B的直徑大,A中水面上升的速度大于B,所以A對應(3),B對應(2),C為下大上小的錐形,隨著水面的升高,橫截面積越來越小,水面上升的速度會越來越快,故選(4),D的下部為圓球型,上部為圓柱形,隨著水面的升高,橫截面積越來越大,水面上升的速度會越來越慢,當達到球體的一半時,水面上升的速度會越來越快,所以水的高度和時間之間對應的示意圖是(1).

故答案為:(A)——(3),(B)——(2),(C)——(4) , (D)——(1)

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在下面的方格紙中,找出互相平行的線段,并用符號表示出來:____________________.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點A的坐標為(3,﹣3),點B的坐標為(﹣1,3),回答下列問題

(1)C的坐標是

(2)B關于原點的對稱點的坐標是

(3)ABC的面積為

(4)畫出△ABC關于x軸對稱的△A′B′C′.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖①,△ABC中,AB=AC,∠B、∠C的平分線交于O點,過O點作EFBCAB、ACEF.

(1)圖①中有幾個等腰三角形?猜想:EFBE、CF之間有怎樣的關系.

(2)如圖②,ABAC,其他條件不變,圖中還有等腰三角形嗎?如果有,分別指出它們.在第(1)問中EFBE、CF間的關系還存在嗎?

(3)如圖③,若△ABC中∠B的平分線BO與三角形外角平分線CO交于O,過O點作OEBCABE,交ACF.這時圖中還有等腰三角形嗎?EFBE、CF關系又如何?說明你的理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在第一象限內,點P(2,3),M(a,2)是雙曲線y= (k≠0)上的兩點,PA⊥x軸于點A,MB⊥x軸于點B,PA與OM交于點C,則△OAC的面積為

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖所示的運算程序中,若開始輸入的值為,我們發(fā)現第次輸出的結果為,第次輸出的結果為,……次輸出的結果_______________;第次輸出的結果為______________.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖所示.在△ABC,∠BAC=106°,EF、MN分別是AB、AC的中垂線,E、NBC,則∠EAN=( 。

A. 58° B. 32° C. 36° D. 34°

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,將一個長為4a,寬為2b的長方形,沿圖中虛線均分成4個長方形,然后按圖2形狀拼成一個正方形

(1)2中陰影部分的邊長是   (用含a、b的式子表示);

(2)2a+b=7,ab=3,求圖2中陰影部分的面積;

(3)觀察圖2,用等式表示出(2ab2,ab,(2a+b2的數量關系是   

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】愛好思考的小茜在探究兩條直線的位置關系查閱資料時,發(fā)現了“中垂三角形”,即兩條中線互相垂直的三角形稱為“中垂三角形”.如圖(1)、圖(2)、圖(3)中,AM、BN是△ABC的中線,AM⊥BN于點P,像△ABC這樣的三角形均為“中垂三角形”.設BC=a,AC=b,AB=c.
(1)【特例探究】
如圖1,當tan∠PAB=1,c=4 時,a= , b=;
如圖2,當∠PAB=30°,c=2時,a= , b=

(2)【歸納證明】
請你觀察(1)中的計算結果,猜想a2、b2、c2三者之間的關系,用等式表示出來,并利用圖3證明你的結論.

(3)【拓展證明】
如圖4,ABCD中,E、F分別是AD、BC的三等分點,且AD=3AE,BC=3BF,連接AF、BE、CE,且BE⊥CE于E,AF與BE相交點G,AD=3 ,AB=3,求AF的長.

查看答案和解析>>

同步練習冊答案