【題目】如圖,∠BAC=30°,P是∠BAC平分線上一點(diǎn),PMACABM,PDACD,PD=3,AM=_______.

【答案】

【解析】

過(guò)點(diǎn)PPEABE,根據(jù)角平分線上的點(diǎn)到角的兩邊距離相等可得PDPE,根據(jù)兩直線平行,同位角相等可得∠PME=∠BAC,再根據(jù)直角三角形30°角所對(duì)的直角邊等于斜邊的一半可得PM2PE,根據(jù)角平分線的定義可得∠BAP=∠CAP,根據(jù)兩直線平行,內(nèi)錯(cuò)角相等可得∠CAP=∠APM,從而得到∠BAP=∠APM,然后根據(jù)等角對(duì)等邊可得AMPM

解:如圖,過(guò)點(diǎn)PPEABE,

P是∠BAC平分線上一點(diǎn),PDAC,

PDPE,

PMAC,

∴∠PME=∠BAC30°,

PM2PE

P是∠BAC平分線上一點(diǎn),

∴∠BAP=∠CAP

PMAC,

∴∠CAP=∠APM

∴∠BAP=∠APM,

AMPM

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)試銷一種成本為每件60元的服裝,規(guī)定試銷期間銷售單價(jià)不低于成本單價(jià),且獲利不得高于45%,經(jīng)試銷發(fā)現(xiàn),銷售量y(件)與銷售單價(jià)x(元)符合一次函數(shù)y=kx+b,且x=65時(shí),y=55;x=75時(shí),y=45

1)求一次函數(shù)y=kx+b的表達(dá)式;

2)若該商場(chǎng)獲得利潤(rùn)為W元,試寫出利潤(rùn)W與銷售單價(jià)x之間的關(guān)系式;銷售單價(jià)定為多少元時(shí),商場(chǎng)可獲得最大利潤(rùn),最大利潤(rùn)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】中,,,平分,,上,且.

1)求的度數(shù);

2)求證:.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABE中,BAE=105°,AE的垂直平分線MNBE于點(diǎn)C,且ABCE,則B的度數(shù)是(  )

A. 45°B. 60°C. 50°D. 55°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,我校一塊邊長(zhǎng)為2x米的正方形空地是八年級(jí)1﹣4班的衛(wèi)生區(qū),學(xué)校把它分成大小不同的四塊,采用抽簽的方式安排衛(wèi)生區(qū),下圖是四個(gè)班級(jí)所抽到的衛(wèi)生區(qū)情況,其中1班的衛(wèi)生區(qū)是一塊邊長(zhǎng)為(x﹣2y)米的正方形,其中0<2y<x.

(1)分別用x、y的式子表示八年3班和八年4班的衛(wèi)生區(qū)的面積;

(2)求2班的衛(wèi)生區(qū)的面積比1班的衛(wèi)生區(qū)的面積多多少平方米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC是等邊三角形,點(diǎn)D、E分別是直線BCAC上的點(diǎn),且BD=CE.

(1)如圖①,當(dāng)點(diǎn)D、E分別在線段BC、AC上時(shí),BEAD相交于點(diǎn)F.求∠AFB的度數(shù).

(2)如圖②,當(dāng)點(diǎn)DCB的延長(zhǎng)線上,點(diǎn)EAC的延長(zhǎng)線上時(shí),CFABC的高線則線段CD、AFCE、之間的數(shù)量關(guān)系是 ,并加以證明.

(3)在①的條件下,連接FC,如圖③,若∠DFC=90°,AF= 3,求BF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖△ABC中,∠C=90°,AB=5,BC=3,S、Q兩點(diǎn)同時(shí)分別從A、C出發(fā),點(diǎn)S以每秒2個(gè)單位的速度沿著AC向點(diǎn)C運(yùn)動(dòng),點(diǎn)Q以每秒1個(gè)單位的速度沿著CB向點(diǎn)B運(yùn)動(dòng).當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng).

(1)求經(jīng)過(guò)幾秒,SQ的長(zhǎng)為2;

(2)設(shè)△SQC的面積為y,點(diǎn)S、Q的運(yùn)動(dòng)時(shí)間為x,求yx的函數(shù)關(guān)系式,并寫出x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為使中華傳統(tǒng)文化教育更具有實(shí)效性,軍寧中學(xué)開(kāi)展以我最喜愛(ài)的傳統(tǒng)文化種類為主題的調(diào)查活動(dòng),圍繞在詩(shī)詞、國(guó)畫、對(duì)聯(lián)、書法、戲曲五種傳統(tǒng)文化中,你最喜愛(ài)哪一種?(必選且只選一種)的問(wèn)題,在全校范圍內(nèi)隨機(jī)抽取部分學(xué)生進(jìn)行問(wèn)卷調(diào)查,將調(diào)查結(jié)果整理后繪制成如圖所示的不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)圖中提供的信息回答下列問(wèn)題:

(1)本次調(diào)查共抽取了多少名學(xué)生?

(2)通過(guò)計(jì)算補(bǔ)全條形統(tǒng)計(jì)圖;

(3)若軍寧中學(xué)共有960名學(xué)生,請(qǐng)你估計(jì)該中學(xué)最喜愛(ài)國(guó)畫的學(xué)生有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(題文)(1)閱讀理解:

如圖1,在△ABC中,若AB=10,AC=6,求BC邊上的中線AD的取值范圍.

解決此問(wèn)題可以用如下方法:延長(zhǎng)AD到點(diǎn)E使DE=AD,連接BE(或?qū)ⅰ鰽CD繞著點(diǎn)D逆時(shí)針旋轉(zhuǎn)180°得到△EBD,把AB,AC,2AD集中在△ABE中.利用三角形三邊的關(guān)系即可判斷中線AD的取值范圍是_________;

(2)問(wèn)題解決:

如圖2,在△ABC中,D是BC邊上的中點(diǎn),DE⊥DF于點(diǎn)D,DE交AB于點(diǎn)E,DF交AC于點(diǎn)F,連接EF,求證BE+CF>EF.

查看答案和解析>>

同步練習(xí)冊(cè)答案