【題目】如圖,在中,,,,將繞點(diǎn)順時(shí)針選擇,得到,與相交于點(diǎn),則圖中陰影部分的面積為__________.
【答案】
【解析】
先由已知和旋轉(zhuǎn)的性質(zhì)得到∠C′B′E=30°,∠EAD=45°,AB=AB′=4,BC=B′C′=2,A C′=AC=2,再設(shè)DE=x,且x<2,根據(jù)直角三角形的性質(zhì)和勾股定理得到AE=x,B′E=4-x,AD= ,B′D=2x,C′D=2-2x,然后再Rt△AC′D中運(yùn)用勾股定理求得x,最后利用陰影部分的面積=扇形ABB′的面積-三角形ADB′的面積即可解答.
解:過D作DE⊥A B′,垂足為E,由題意得:∠C′B′E=30°,∠EAD=45°,AB=AB′=4,BC=B′C′=2,A C′=AC=2,
設(shè)DE=x,且x<2,則AE=x,B′E=4-x,AD= ,B′D=2x,C′D=2-2x
∵在Rt△AC′D中AC′2+DC′2=AD2
∴22+(2-2x)2=()2
解得x=2-2或x=2+2(舍)
∴陰影部分的面積為= =
故答案為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】方程的根可視為函數(shù)的圖象與函數(shù)的圖象交點(diǎn)的橫坐標(biāo),則方程的實(shí)根所在的范圍是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,中,,,點(diǎn),分別在邊,上,且,連接,點(diǎn)是的中點(diǎn),點(diǎn)是的中點(diǎn),線段的長為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線交y軸于點(diǎn)B(0,3),交x軸于A,C兩點(diǎn),C點(diǎn)坐標(biāo)(4,0),點(diǎn)P是BC上方拋物線上一動(dòng)點(diǎn)(P不與B,C重合).
(1)求拋物線的解析式;
(2)若點(diǎn)P到直線BC距離是,求點(diǎn)P的坐標(biāo);
(3)連接AP交線段BC于點(diǎn)H,點(diǎn)M是y軸負(fù)半軸上一點(diǎn),且CH=BM,當(dāng)AH+CM的值最小時(shí),請直接寫出點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】張老師把微信運(yùn)動(dòng)里“好友計(jì)步榜”排名前20的好友一天行走的步數(shù)做了整理,繪制了如下不完整的統(tǒng)計(jì)圖表:
組別 | 步數(shù)分組 | 頻率 |
A | x<6000 | 0.1 |
B | 6000≤x<7000 | 0.5 |
C | 7000≤x<8000 | m |
D | x≥8000 | n |
合計(jì) | 1 |
根據(jù)信息解答下列問題:
(1)填空:m= ,n= ;并補(bǔ)全條形統(tǒng)計(jì)圖;
(2)這20名朋友一天行走步數(shù)的中位數(shù)落在 組;(填組別)
(3)張老師準(zhǔn)備隨機(jī)給排名前4名的甲、乙、丙、丁中的兩位點(diǎn)贊,請求出甲、乙被同時(shí)點(diǎn)贊的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,四邊形ABCD是矩形,AD∥x軸,A(,),AB=1,AD=2.
(1)直接寫出B、C、D三點(diǎn)的坐標(biāo);
(2)將矩形ABCD向右平移m個(gè)單位,使點(diǎn)A、C恰好同時(shí)落在反比例函數(shù)()的圖象上,得矩形A′B′C′D′.求矩形ABCD的平移距離m和反比例函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC內(nèi)接于⊙O,AB是直徑,OD⊥BC于點(diǎn)D,延長DO交⊙O于F,連接OC,AF.
(1)求證:△COD≌△BOD;
(2)填空:①當(dāng)∠1= 時(shí),四邊形OCAF是菱形;
②當(dāng)∠1= 時(shí),AB=2OD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)經(jīng)過A(-1,0),B(4,0),C(0,2)三點(diǎn).
(1)求這條拋物線的解析式;
(2)E為拋物線上一動(dòng)點(diǎn),是否存在點(diǎn)E,使以A、B、E為頂點(diǎn)的三角形與△COB相似?若存在,試求出點(diǎn)E的坐標(biāo);若不存在,請說明理由;
(3)若將直線BC平移,使其經(jīng)過點(diǎn)A,且與拋物線相交于點(diǎn)D,連接BD,試求出∠BDA的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AC=6 ,點(diǎn)D為直線AB上一點(diǎn),且AB=3BD,直線CD與直線BC所夾銳角的正切值為 ,并且CD⊥AC,則BC的長為________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com