【題目】(操作發(fā)現(xiàn))
如圖①,在邊長(zhǎng)為1個(gè)單位長(zhǎng)度的小正方形組成的網(wǎng)格中,△ABC的三個(gè)頂點(diǎn)均在格點(diǎn)上.
(1)請(qǐng)按要求畫圖:將△ABC繞點(diǎn)A按順時(shí)針?lè)较蛐D(zhuǎn)90°,點(diǎn)B的對(duì)應(yīng)點(diǎn)為B′,點(diǎn)C的對(duì)應(yīng)點(diǎn)為C′,連接BB′;
(2)在(1)所畫圖形中,∠AB′B=____.
(問(wèn)題解決)
(3)如圖②,在等邊三角形ABC中,AC=7,點(diǎn)P在△ABC內(nèi),且∠APC=90°,∠BPC=120°,求△APC的面積.
小明同學(xué)通過(guò)觀察、分析、思考,對(duì)上述問(wèn)題形成了如下想法:
想法一:將△APC繞點(diǎn)A按順時(shí)針?lè)较蛐D(zhuǎn)60°,得到△AP′B,連接PP′,尋找PA,PB,PC三條線段之間的數(shù)量關(guān)系;
想法二:將△APB繞點(diǎn)A按逆時(shí)針?lè)较蛐D(zhuǎn)60°,得到△AP′C′,連接PP′,尋找PA,PB,PC三條線段之間的數(shù)量關(guān)系.…
請(qǐng)參考小明同學(xué)的想法,完成該問(wèn)題的解答過(guò)程.(一種方法即可)
【答案】(1)如圖,△AB′C′即為所求;見解析;(2)45°;(3)S△APC=.
【解析】
(1)如圖所示,△AB′C′即為所求;
(2)利用等腰三角形的性質(zhì)即可解決問(wèn)題;
【問(wèn)題解決】
結(jié)論:PA2+PB2=PC2.
證法一:將△APC繞點(diǎn)A按順時(shí)針?lè)较蛐D(zhuǎn)60°,得到△AP′B,連接PP′,尋找PA,PB,PC三條線段之間的數(shù)量關(guān)系;
證法二:將△APB繞點(diǎn)A按逆時(shí)針?lè)较蛐D(zhuǎn)60°,得到△AP′C′,連接PP′,尋找PA,PB,PC三條線段之間的數(shù)量關(guān)系.
(1)如圖,△AB′C′即為所求;
(2)∵△ABB′是等腰直角三角形,
∴∠AB′B=45°.
故答案為45°;
(3)如圖②,
∵將△APB繞點(diǎn)A按逆時(shí)針?lè)较蛐D(zhuǎn)60°,得到△AP′C′,
∴△APP′是等邊三角形,∠AP′C=∠APB=360°﹣90°﹣120°=150°,
∴PP′=AP,∠AP′P=∠APP′=60°,∴∠PP′C=90°,∠P′PC=30°,
∴PP′= PC,即AP= PC
∵∠APC=90°,∴AP2+PC2=AC2 , 即(PC)2+PC2=72 , ∴PC=,
∴AP=,∴S△APC=APPC=
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在正方形ABCD中,AB=8,點(diǎn)P在邊CD上,tan∠PBC=,點(diǎn)Q是在射線BP上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)Q作AB的平行線交射線AD于點(diǎn)M,點(diǎn)R在射線AD上,使RQ始終與直線BP垂直.
(1)如圖1,當(dāng)點(diǎn)R與點(diǎn)D重合時(shí),求PQ的長(zhǎng);
(2)如圖2,試探索: 的比值是否隨點(diǎn)Q的運(yùn)動(dòng)而發(fā)生變化?若有變化,請(qǐng)說(shuō)明你的理由;若沒(méi)有變化,請(qǐng)求出它的比值;
(3)如圖3,若點(diǎn)Q在線段BP上,設(shè)PQ=x,RM=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出它的定義域.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC是等腰直角三角形,AB=AC,D為平面內(nèi)的任意一點(diǎn),且滿足CD=AC,若△ADB是以AD為腰的等腰三角形,則∠CDB的度數(shù)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,在等腰直角三角形中,,,D,E分別在上,且,此時(shí)有,.
(1)如圖①中 繞點(diǎn)A旋轉(zhuǎn)至如圖②時(shí)上述結(jié)論是否仍然成立?若成立,請(qǐng)證明;若不成立,請(qǐng)說(shuō)明理由.
(2)將圖①中的繞點(diǎn)A旋轉(zhuǎn)至DE與直線AC垂直,直線BD交CE于點(diǎn)F,若,,請(qǐng)畫出圖形,并求出BF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如何求tan75°的值?按下列方法作圖可解決問(wèn)題,如圖,在Rt△ABC中,AC=k,∠ACB=90°,∠ABC=30°,延長(zhǎng)CB至點(diǎn)M,在射線BM上截取線段BD,使BD=AB,連接AD,依據(jù)此圖可求得tan75°的值為( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為豐富學(xué)生的課余生活,學(xué)校準(zhǔn)備購(gòu)買部分體育器材,以滿足學(xué)生們的需求.學(xué)校對(duì)“我最喜愛(ài)的體育運(yùn)動(dòng)”進(jìn)行了抽樣調(diào)查(每個(gè)學(xué)生只選一次),根據(jù)調(diào)查結(jié)果繪成如圖所示的兩幅不完整統(tǒng)計(jì)圖,請(qǐng)你根據(jù)統(tǒng)計(jì)圖提供的信息解答下列問(wèn)題.
(1)求m、n的值;
(2)若該校有2000名學(xué)生,請(qǐng)你根據(jù)樣本數(shù)據(jù),估算該校喜歡踢足球的學(xué)生人數(shù)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在鈍角三角形中,分別以和為斜邊向的外側(cè)作等腰直角三角形和等腰直角三角形,平分交于點(diǎn),取的中點(diǎn),的中點(diǎn),連接,,,下列結(jié)論:①;②;③;④.其中正確結(jié)論有( )
A. 個(gè)B. 個(gè)C. 個(gè)D. 個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著信息技術(shù)的迅猛發(fā)展,人們?nèi)ド虉?chǎng)購(gòu)物的支付方式更加多樣、便捷.某校數(shù)學(xué)興趣小組設(shè)計(jì)了一份調(diào)查問(wèn)卷,要求每人選且只選一種你最喜歡的支付方式.現(xiàn)將調(diào)查結(jié)果進(jìn)行統(tǒng)計(jì)并繪制成如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)結(jié)合圖中所給的信息解答下列問(wèn)題:
(1)這次活動(dòng)共調(diào)查了 人;在扇形統(tǒng)計(jì)圖中,表示“支付寶”支付的扇形圓心角的度數(shù)為 ;
(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整.觀察此圖,支付方式的“眾數(shù)”是“ ”;
(3)在一次購(gòu)物中,小明和小亮都想從“微信”、“支付寶”、“銀行卡”三種支付方式中選一種方式進(jìn)行支付,請(qǐng)用畫樹狀圖或列表格的方法,求出兩人恰好選擇同一種支付方式的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“大美濕地,水韻鹽城”.某校數(shù)學(xué)興趣小組就“最想去的鹽城市旅游景點(diǎn)”隨機(jī)調(diào)查了本校部分學(xué)生,要求每位同學(xué)選擇且只能選擇一個(gè)最想去的景點(diǎn),下面是根據(jù)調(diào)查結(jié)果進(jìn)行數(shù)據(jù)整理后繪制出的不完整的統(tǒng)計(jì)圖:
請(qǐng)根據(jù)圖中提供的信息,解答下列問(wèn)題:
(1)求被調(diào)查的學(xué)生總?cè)藬?shù);
(2)補(bǔ)全條形統(tǒng)計(jì)圖,并求扇形統(tǒng)計(jì)圖中表示“最想去景點(diǎn)D”的扇形圓心角的度數(shù);
(3)若該校共有800名學(xué)生,請(qǐng)估計(jì)“最想去景點(diǎn)B“的學(xué)生人數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com