【題目】如圖,在鈍角三角形中,分別以和為斜邊向的外側(cè)作等腰直角三角形和等腰直角三角形,平分交于點(diǎn),取的中點(diǎn),的中點(diǎn),連接,,,下列結(jié)論:①;②;③;④.其中正確結(jié)論有( )
A. 個(gè)B. 個(gè)C. 個(gè)D. 個(gè)
【答案】D
【解析】
①首先根據(jù)D是BC中點(diǎn),N是AC中點(diǎn)N,可得DN是△ABC的中位線,判斷出DN=AB;然后判斷出EM=AB,即可判斷出EM=DN;
②首先根據(jù)DN∥AB,可得△CDN∽ABC;然后根據(jù)DN=AB,可得S△CDN=S△ABC,所以S△CDN=S四邊形ABDN,據(jù)此判斷即可.
③首先連接MD、FN,判斷出DM=FN,∠EMD=∠DNF,然后根據(jù)全等三角形判定的方法,判斷出△EMD≌△DNF,即可判斷出DE=DF.
④首先判斷出=sin45°=,DM=FA,∠EMD=∠EAF,根據(jù)相似三角形判定的方法,判斷出△EMD∽△∠EAF,即可判斷出∠MED=∠AEF,然后根據(jù)∠MED+∠AED=45°,判斷出∠DEF=45°,再根據(jù)DE=DF,判斷出∠DFE=45°,∠EDF=90°,即可判斷出DE⊥DF.
解:∵D是BC中點(diǎn),N是AC中點(diǎn),
∴DN是△ABC的中位線,
∴DN∥AB,且DN=AB;
∵三角形ABE是等腰直角三角形,EM平分∠AEB交AB于點(diǎn)M,
∴M是AB的中點(diǎn),
∴EM=AB,
又∵DN=AB,
∴EM=DN,
∴結(jié)論①正確;
∵DN∥AB,
∴△CDN∽ABC,
∵DN=AB,
∴S△CDN=S△ABC,
∴S△CDN=S四邊形ABDN,
∴結(jié)論②正確;
如圖1,連接MD、FN,
∵D是BC中點(diǎn),M是AB中點(diǎn),
∴DM是△ABC的中位線,
∴DM∥AC,且DM=AC;
∵三角形ACF是等腰直角三角形,N是AC的中點(diǎn),
∴FN=AC,
又∵DM=AC,
∴DM=FN,
∵DM∥AC,DN∥AB,
∴四邊形AMDN是平行四邊形,
∴∠AMD=∠AND,
又∵∠EMA=∠FNA=90°,
∴∠EMD=∠DNF,
在△EMD和△DNF中,
EM=DN,∠EMD=∠DNF,MD=NF,
∴△EMD≌△DNF,
∴DE=DF,
∴結(jié)論③正確;
如圖2,連接MD,EF,NF,
∵三角形ABE是等腰直角三角形,EM平分∠AEB,
∴M是AB的中點(diǎn),EM⊥AB,
∴EM=MA,∠EMA=90°,∠AEM=∠EAM=45°,
∴=sin45°=,
∵D是BC中點(diǎn),M是AB中點(diǎn),
∴DM是△ABC的中位線,
∴DM∥AC,且DM=AC;
∵三角形ACF是等腰直角三角形,N是AC的中點(diǎn),
∴FN=AC,∠FNA=90°,∠FAN=∠AFN=45°,
又∵DM=AC,
∴DM=FN=FA,
∵∠EMD=∠EMA+∠AMD=90°+∠AMD,
∠EAF=360°∠EAM∠FAN∠BAC
=360°45°45°(180°∠AMD)
=90°+∠AMD
∴∠EMD=∠EAF,
在△EMD和△∠EAF中,,∠EMD=∠EAF,
∴△EMD∽△∠EAF,
∴∠MED=∠AEF,
∵∠MED+∠AED=45°,
∴∠AED+∠AEF=45°,
即∠DEF=45°,
又∵DE=DF,
∴∠DFE=45°,
∴∠EDF=180°45°45°=90°,
∴DE⊥DF,
∴結(jié)論④正確.
∴正確的結(jié)論有4個(gè):①②③④.
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解學(xué)生對(duì)博鰲論壇會(huì)的了解情況,某中學(xué)隨機(jī)抽取了部分學(xué)生進(jìn)行問(wèn)卷調(diào)查,將調(diào)查結(jié)果記作“非常了解,了解,了解較少,不了解.”四類分別統(tǒng)計(jì),并繪制了下列兩幅統(tǒng)計(jì)圖(不完整).請(qǐng)根據(jù)圖中信息,解答下列問(wèn)題:
(1)此次共調(diào)查了______名學(xué)生;扇形統(tǒng)計(jì)圖中所在的扇形的圓心角度數(shù)為______;
(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)若該校共有1600名學(xué)生,請(qǐng)你估計(jì)對(duì)博鰲論壇會(huì)的了解情況為“非常了解”的學(xué)生約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,E是AB的中點(diǎn),連接DE、CE.
(1)求證:△ADE≌△BCE;
(2)若AB=6,AD=4,求△CDE的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(操作發(fā)現(xiàn))
如圖①,在邊長(zhǎng)為1個(gè)單位長(zhǎng)度的小正方形組成的網(wǎng)格中,△ABC的三個(gè)頂點(diǎn)均在格點(diǎn)上.
(1)請(qǐng)按要求畫(huà)圖:將△ABC繞點(diǎn)A按順時(shí)針?lè)较蛐D(zhuǎn)90°,點(diǎn)B的對(duì)應(yīng)點(diǎn)為B′,點(diǎn)C的對(duì)應(yīng)點(diǎn)為C′,連接BB′;
(2)在(1)所畫(huà)圖形中,∠AB′B=____.
(問(wèn)題解決)
(3)如圖②,在等邊三角形ABC中,AC=7,點(diǎn)P在△ABC內(nèi),且∠APC=90°,∠BPC=120°,求△APC的面積.
小明同學(xué)通過(guò)觀察、分析、思考,對(duì)上述問(wèn)題形成了如下想法:
想法一:將△APC繞點(diǎn)A按順時(shí)針?lè)较蛐D(zhuǎn)60°,得到△AP′B,連接PP′,尋找PA,PB,PC三條線段之間的數(shù)量關(guān)系;
想法二:將△APB繞點(diǎn)A按逆時(shí)針?lè)较蛐D(zhuǎn)60°,得到△AP′C′,連接PP′,尋找PA,PB,PC三條線段之間的數(shù)量關(guān)系.…
請(qǐng)參考小明同學(xué)的想法,完成該問(wèn)題的解答過(guò)程.(一種方法即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=x+b的圖象經(jīng)過(guò)點(diǎn)A(0,1),與反比例函數(shù)y=(x>0)的圖象交于B(m,2).
(1)求k和b的值;
(2)在雙曲線y=(x>0)上是否存在點(diǎn)C,使得△ABC為等腰直角三角形?若存在,求出點(diǎn)C坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,E為DC的中點(diǎn),AD:AB=:2,CP:BP=1:2,連接EP并延長(zhǎng),交AB的延長(zhǎng)線于點(diǎn)F,AP、BE相交于點(diǎn)O.下列結(jié)論:①EP平分∠CEB;②=PBEF;③PFEF=2;④EFEP=4AOPO.其中正確的是( )
A. ①②③B. ①②④C. ①③④D. ③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=kx+3的圖象分別交x軸、y軸于點(diǎn)B、點(diǎn)C,與反比例函數(shù)的圖象在第四象限的相交于點(diǎn)P,并且PA⊥y軸于點(diǎn)A,已知A (0,﹣6),且S△CAP=18.
(1)求上述一次函數(shù)與反比例函數(shù)的表達(dá)式;
(2)設(shè)Q是一次函數(shù)y=kx+3圖象上的一點(diǎn),且滿足△OCQ的面積是△BCO面積的2倍,求出點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,對(duì)稱軸為直線x=1的拋物線經(jīng)過(guò)A(﹣1,0)、C(0,3)兩點(diǎn),與x軸的另一個(gè)交點(diǎn)為B,點(diǎn)D在y軸上,且OB=3OD
(1)求該拋物線的表達(dá)式;
(2)設(shè)該拋物線上的一個(gè)動(dòng)點(diǎn)P的橫坐標(biāo)為t
①當(dāng)0<t<3時(shí),求四邊形CDBP的面積S與t的函數(shù)關(guān)系式,并求出S的最大值;
②點(diǎn)Q在直線BC上,若以CD為邊,點(diǎn)C、D、Q、P為頂點(diǎn)的四邊形是平行四邊形,請(qǐng)求出所有符合條件的點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在一筆直的海岸線l上有A、B兩個(gè)碼頭,A在B的正東方向,一艘小船從A碼頭沿它的北偏西60°的方向行駛了20海里到達(dá)點(diǎn)P處,此時(shí)從B碼頭測(cè)得小船在它的北偏東45°的方向.求此時(shí)小船到B碼頭的距離(即BP的長(zhǎng))和A、B兩個(gè)碼頭間的距離(結(jié)果都保留根號(hào)).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com