【題目】已知:點(diǎn)O是平行四邊形ABCD兩條對(duì)角線的交點(diǎn),點(diǎn)P是AC所在直線上的一個(gè)動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)A、C重合),分別過(guò)點(diǎn)A、C向直線BP作垂線,垂足分別為E、F
(1)如圖1,當(dāng)點(diǎn)P與點(diǎn)O重合時(shí),求證:OE=OF
(2)直線BP繞點(diǎn)B逆時(shí)針?lè)较蛐D(zhuǎn),當(dāng)∠OFE=時(shí),有OE=OF,如圖2,線段CF、AE、OE之間有怎樣的數(shù)量關(guān)系?給出證明。
(3)當(dāng)點(diǎn)P在圖3位置,且∠OFE=時(shí),線段CF、AE、OE之間有怎樣的數(shù)量關(guān)系?(直接寫出結(jié)論,無(wú)需證明.
【答案】(1)(2)證明見(jiàn)解析;(3)CF=OE-AE.
【解析】
(1)由△AOE≌△COF即可得出結(jié)論.
(2)圖2中的結(jié)論為:CF=OE+AE,延長(zhǎng)EO交CF于點(diǎn)G,只要證明△EOA≌△GOC,△OFG是等邊三角形,即可解決問(wèn)題.
(3)圖3中的結(jié)論為:CF=OE-AE,延長(zhǎng)EO交FC的延長(zhǎng)線于點(diǎn)G,證明方法類似.
(1)∵重合
∴
∵四邊形ABCD是平行四邊形,O為對(duì)角線交點(diǎn)
∴AO=CO,
在△AEO和△CFO中,
∴△AEO△CFO(AAS)
∴OE=OF
(2)延長(zhǎng)EO交CF于點(diǎn)G,如圖所示,
則可得
∵
∴AE∥CF
∴
又∵O 為對(duì)角線交點(diǎn)
∴AO=CO
在△AEO和△CGO中,
∴△AEO△CGO(ASA)
∴OE=OG,AE=CG
在Rt△EFG中,OE=OG,
∴點(diǎn)O為Rt△EFG斜邊EG的中點(diǎn),
故OF=OE=OG=
∴∠OFE=∠OEF=30°
∴∠OFG=∠EFG∠OFE=90°30°=60°
又∵OF=OG
∴△OFG為等邊三角形
故GF=OF=OE
∵CF=CG+GF
∴CF=CG+GF =AE+OE
(3)延長(zhǎng)EO、FC交于點(diǎn)G,如圖所示,
∵
∴AE∥CF
∴
又∵O 為對(duì)角線交點(diǎn)
∴AO=CO
在△AEO和△CGO中,
∴△AEO△CGO(AAS)
∴OE=OG,AE=CG
在Rt△EFG中,OE=OG,
故點(diǎn)O為Rt三角形EFG斜邊EG的中點(diǎn),
∴OF=OE=OG=
∵∠OEF=30°
∴∠OFE=∠OEF=30°
即∠OFG=∠EFG-∠EFO=90°30°=60°
又∵OF=OG
∴△OFG為等邊三角形
∴GF=OF=OG=OE
∵CF=GF-CG
∴CF=OE-AE
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,AB=BC=2,將△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)60°,得到△DEC,則AE的長(zhǎng)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(3分)如圖,△ABC中,AB=AC,AB的垂直平分線交邊AB于D點(diǎn),交邊AC于E點(diǎn),若△ABC與△EBC的周長(zhǎng)分別是40cm,24cm,則AB= cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中BA=BC,點(diǎn)D是AB延長(zhǎng)線上一點(diǎn),DF⊥AC于F交BC于E,
求證:△DBE是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某賓館擁有客房100間,經(jīng)營(yíng)中發(fā)現(xiàn):每天入住的客房數(shù)y(間)與其價(jià)格x(元)(180≤x≤300)滿足一次函數(shù)關(guān)系,部分對(duì)應(yīng)值如表:
x(元) | 180 | 260 | 280 | 300 |
y(間) | 100 | 60 | 50 | 40 |
(1)求y與x之間的函數(shù)表達(dá)式;
(2)已知每間入住的客房,賓館每日需支出各種費(fèi)用100元;每日空置的客房需支出各種費(fèi)用60元,當(dāng)房?jī)r(jià)為多少元時(shí),賓館當(dāng)日利潤(rùn)最大?求出最大值.(賓館當(dāng)日利潤(rùn)=當(dāng)日房費(fèi)收入﹣當(dāng)日支出)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,點(diǎn)D是邊AC上一點(diǎn),BC=BD=AD,則∠A的大小是( 。
A. 36° B. 54° C. 72° D. 30°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義,我們把對(duì)角線互相垂直的四邊形叫做垂美四邊形.
概念理解:如圖②,在四邊形ABCD中,如果AB=AD,CB=CD,那么四邊形ABCD是垂美四邊形嗎?請(qǐng)說(shuō)明理由.
性質(zhì)探究:如圖①,垂美四邊形ABCD兩組對(duì)邊AB、CD與BC、AD之間有怎樣的數(shù)量關(guān)系?寫出你的猜想,并給出證明.
問(wèn)題解決:如圖③,分別以Rt△ACB的直角邊AC和斜邊AB為邊向外作正方形ACFG 和正方形ABDE,連結(jié)CE、BG、GE.若AC=2,AB=5,則①求證:△AGB≌△ACE;
②GE= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ACB和△ECD都是等邊三角形,點(diǎn)A、D、E在同一直線上,連接BE.
(1)求證:AD=BE;
(2)求∠AEB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2016年黔西南州教育局組織全州中小學(xué)生參加全省安全知識(shí)網(wǎng)絡(luò)競(jìng)賽,在全州安全知識(shí)競(jìng)賽結(jié)束后,通過(guò)網(wǎng)上查詢,某校一名班主任對(duì)本班成績(jī)(成績(jī)?nèi)≌麛?shù),滿分100分)作了統(tǒng)計(jì)分析,繪制成如下頻數(shù)分布表和頻數(shù)分布直方圖,請(qǐng)你根據(jù)圖表提供的信息,解答下列問(wèn)題:
(1)頻數(shù)分布表中a= , b= , c=
(2)補(bǔ)全頻數(shù)分布直方圖
(3)為了激勵(lì)學(xué)生增強(qiáng)安全意識(shí),班主任準(zhǔn)備從超過(guò)90分的學(xué)生中選2人介紹學(xué)習(xí)經(jīng)驗(yàn),那么取得100分的小亮和小華同時(shí)被選上的概率是多少?請(qǐng)用列表法或畫樹(shù)狀圖加以說(shuō)明,并列出所有等可能結(jié)果.
頻數(shù)分布表
分組(分) | 頻數(shù) | 頻率 |
50<x 60 | 2 | 0.04 |
60<x 70 | 12 | a |
70<x<80 | b | 0.36 |
80<x 90 | 14 | 0.28 |
90<x 100 | c | 0.08 |
合計(jì) | 50 | 1 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com