【題目】如圖,點B,F,C,E在同一直線上,AC,DF相交于點G,且△ABC≌△DEF
(1)若△ABC的周長為12cm,AB=3cm,BC=4cm,求DF的長.
(2)若DE⊥BC與點E,∠A=65°,求∠AGF的度數(shù).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,對角線AC的垂直平分線交AD、BC于點E、F,AC與EF交于點O,連結(jié)AF、CE.
(1)求證:四邊形AFCE是菱形;
(2)若AB=3,AD=4,求菱形AFCE的邊長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,甲、乙兩位同學(xué)在長方形的場地ABCD上繞著四周跑步,甲沿著A-D-C-B-A方向循環(huán)跑步,同時乙沿著B-C-D-A-B方向循環(huán)跑步,AB=30米,BC=50米,若甲速度為2米/秒,乙速度3米/秒.
(1)設(shè)經(jīng)過的時間為t秒,則用含t的代數(shù)式表示甲的路程為 米;
(2)當(dāng)甲、乙兩人第一次相遇時,求所經(jīng)過的時間t為多少秒?
(3)若甲改為沿著A-B-C-D-A的方向循環(huán)跑步,而乙仍按原來的方向跑步,兩人的速度不變,求經(jīng)過多少秒,乙追上甲?
(4)在(3)的條件下,當(dāng)乙第一次追上甲后繼續(xù)跑步,則最少再經(jīng)過秒乙又追上甲,這時兩人所處的位置在點P;直接寫出的值,在圖中標(biāo)出點P,不要求書寫過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,長方形ABCD中,∠DAB=∠B=∠DCB=∠D=90°,AD=BC=6,AB=CD=10.點E為射線DC上的一個動點,把△ADE沿直線AE翻折得△AD′E.
(1)當(dāng)D′點落在AB邊上時,∠DAE= °;
(2)如圖2,當(dāng)E點與C點重合時,D′C與AB交點F,
①求證:AF=FC;②求AF長.
(3)連接D′B,當(dāng)∠AD′B=90°時,求DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】再讀教材:
寬與長的比是 (約為0.618)的矩形叫做黃金矩形,黃金矩形給我們以協(xié)調(diào),勻稱的美感.世界各國許多著名的建筑.為取得最佳的視覺效果,都采用了黃金矩形的設(shè)計,下面我們用寬為2的矩形紙片折疊黃金矩形.(提示; MN=2)
第一步,在矩形紙片一端.利用圖①的方法折出一個正方形,然后把紙片展平.
第二步,如圖②.把這個正方形折成兩個相等的矩形,再把紙片展平.
第三步,折出內(nèi)側(cè)矩形的對角線 AB,并把 AB折到圖③中所示的AD處,
第四步,展平紙片,按照所得的點D折出 DE,使 DE⊥ND,則圖④中就會出現(xiàn)黃金矩形,
問題解決:
(1)圖③中AB=________(保留根號);
(2)如圖③,判斷四邊形 BADQ的形狀,并說明理由;
(3)請寫出圖④中所有的黃金矩形,并選擇其中一個說明理由.
(4)結(jié)合圖④.請在矩形 BCDE中添加一條線段,設(shè)計一個新的黃金矩形,用字母表示出來,并寫出它的長和寬.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2019年4月4日,中國國際女足錦標(biāo)賽半決賽在武漢進(jìn)行,這場由中國隊迎戰(zhàn)俄羅斯隊的比賽牽動著眾多足球愛好者的心.在未開始檢票入場前,已有1200名足球愛好者排隊等待入場.假設(shè)檢票開始后,每分鐘趕來的足球愛好者人數(shù)是固定的,1個檢票口每分鐘可以進(jìn)入40人.如果4個檢票口同時檢票,15分鐘后排隊現(xiàn)象消失;如果7個檢票口同時檢票,_____分鐘后排隊現(xiàn)象消失.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面是按規(guī)律排列的一列式子:
第1個式子:;
第2個式子:;
第3個式子:;
……
(1)分別計算出這三個式子的結(jié)果;
(2)請按規(guī)律寫出第2019個式子的形式(中間部分用省略號,兩端部分必須寫詳細(xì));
(3)計算第2019個式子的結(jié)果.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有筐白菜,以每筐千克為標(biāo)準(zhǔn),超過或不足的分別用正、負(fù)來表示,記錄如下:
與標(biāo)準(zhǔn)質(zhì)量的差單位:千克 | ||||||
筐 數(shù) |
(1)與標(biāo)準(zhǔn)質(zhì)量比較,筐白菜總計超過或不足多少千克?
(2)若白菜每千克售價元,則出售這筐白菜可賣多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點P是正方形ABCD內(nèi)的一點,連接CP,將線段CP繞點C順時針旋轉(zhuǎn)90°,得到線段CQ,連接BP,DQ.
(1)如圖a,求證:△BCP≌△DCQ;
(2)如圖,延長BP交直線DQ于點E.
① 如圖b,求證:BE⊥DQ;
② 如圖c,若△BCP為等邊三角形,判斷△DEP的形狀,并說明理由;
③ 若正方形ABCD的邊長為10,DE=2,PB=PC,直接寫出線段PB的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com