求證:等腰梯形下底的中點(diǎn)到兩腰的距離相等.(要求完成圖形,寫出已知.求證,并加以證明)
如圖:四邊形ABCD中,ADBC,AB=CD,E是BC的中點(diǎn),過(guò)E作EF⊥AB于F,EG⊥CD于G,求證:EF=EG.
證明:∵E是BC中點(diǎn),
∴BE=EC.
∵四邊形ABCD是等腰梯形,
∴∠B=∠C.
∵∠BFE=∠CGE=90°,
∴△BFE≌△CGE.
∴EF=EG.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

一等腰梯形兩組對(duì)邊中點(diǎn)連線段的平方和為8,則這個(gè)等腰梯形的對(duì)角線長(zhǎng)為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,等腰梯形ABCD中,ABCD,AD=BC=6,AB=12,CD=4,則梯形ABCD的面積為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,在梯形ABCD中,ABDC,∠ADC的平分線與∠BCD的平分線的交點(diǎn)E恰在AB上.若AD=7cm,BC=8cm,則AB的長(zhǎng)度是______cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,梯形ABCD中,ADBC,AD=AB,BD=BC,∠A=120°,則∠C=( 。
A.60°B.70°C.75°D.80°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在梯形ABCD中,ADBC,且AD>BC,BC=6cm,AD=9cm,P、Q分別從A、C同時(shí)出發(fā),P以1cm/s的速度由A向D運(yùn)動(dòng),Q以2cm/s的速度由C向B運(yùn)動(dòng),其中一個(gè)動(dòng)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也停止運(yùn)動(dòng).試計(jì)算,
(1)當(dāng)運(yùn)動(dòng)時(shí)間為多少時(shí),直線PQ四邊形截出四邊形是一個(gè)平行四邊形?
(2)在直線PQ所截出的平行四邊形中,在PQ的對(duì)邊任取一點(diǎn)O,連接OP、OQ,得到△OPQ,則△OPQ的面積與直線PQ所截出的平行四邊形的面積有何關(guān)系?并說(shuō)明理由.(在圖1、圖2中任取一種畫出圖形,說(shuō)明理由即可.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在梯形ABCD中,∠B=90°,AB=14cm,AD=18cm,BC=21cm,點(diǎn)P從點(diǎn)A開始沿AD邊向點(diǎn)D以1cm/s的速度移動(dòng),點(diǎn)Q從點(diǎn)C開始沿CB向點(diǎn)B以2cm/s的速度移動(dòng),如果點(diǎn)P、Q分別從兩點(diǎn)同時(shí)出發(fā),當(dāng)其中某一點(diǎn)到達(dá)端點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng).
(1)t為何值時(shí),梯形PBQD是平行四邊形?
(2)t為何值時(shí),梯形PBQD是等腰梯形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,梯形ABCD中,ADBC,∠ABC=Rt∠,點(diǎn)E為AB上一點(diǎn),且AE=BC=6,BE=AD=2,給出下列結(jié)論:
①梯形的面積等于32;
②CD的長(zhǎng)為4
5
;
③△DEC為等腰直角三角形;
④DE平分∠ADC;
⑤∠BCD=60°.其中正確的個(gè)數(shù)有( 。
A.2個(gè)B.3個(gè)C.4個(gè)D.5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在梯形ABCD中,ADBC,∠B=90°,AB=3cm,AD=8cm,BC=12cm,點(diǎn)P從點(diǎn)B開始沿折線B?C?D?A以4cm/s的速度移動(dòng),點(diǎn)Q從點(diǎn)D開始沿DA邊向A點(diǎn)以1cm/s的速度移動(dòng).若點(diǎn)P、Q分別從B、D同時(shí)出發(fā),當(dāng)其中一個(gè)點(diǎn)到達(dá)點(diǎn)A時(shí),另一點(diǎn)也隨之停止移動(dòng).設(shè)移動(dòng)時(shí)間為t(s).
求當(dāng)t為何值時(shí):
(1)四邊形PCDQ為平行四邊形;
(2)四邊形PCDQ為等腰梯形;
(3)PQ=3cm.

查看答案和解析>>

同步練習(xí)冊(cè)答案