【題目】如圖,已知∠ACB=∠DCE=90°,AC=BC=6,CD=CE,AE=3,∠CAE=45°,求AD的長.

【答案】AD=9.

【解析】

連接BE,根據(jù)已知條件先證出BCE=ACD,根據(jù)SAS證出ACD≌△BCE,得出AD=BE,再根據(jù)勾股定理求出AB,然后根據(jù)BAC=CAE=45°,求出BAE=90°,在RtBAE中,根據(jù)AB、AE的值,求出BE,從而得出AD.

如圖,連接BE,

∵∠ACB=DCE=90°,∴∠ACB+ACE=DCE+ACE,

BCE=ACD,

AC=BC,DC=EC,

ACD和BCE中,

∴△ACD≌△BCE(SAS),

AD=BE,

AC=BC=6,AB=6 ,

∵∠BAC=CAE=45°,∴∠BAE=90°,

在RtBAE中,AB=6,AE=3,

BE= ===9,

AD=9.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法中,正確的是(  )

A. 一個數(shù)的立方根有兩個,它們互為相反數(shù)B. 負數(shù)沒有立方根

C. 如果一個數(shù)有立方根,那么它一定有平方根D. 一個數(shù)的立方根的符號與被開方數(shù)的符號相同

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在某旅游景區(qū)上山的一條小路上,有一些斷斷續(xù)續(xù)的臺階.下圖是其中的甲、乙兩段臺階路的示意圖.請你用所學(xué)過的有關(guān)統(tǒng)計知識(平均數(shù)、中位數(shù)、方差和極差)回答下列問題:

(1)兩段臺階路有哪些相同點和不同點?

(2)哪段臺階路走起來更舒服?為什么?

(3)為方便游客行走,需要重新整修上山的小路.對于這兩段臺階路,在臺階數(shù)不變的情況下,請你提出合理的整修建議.

圖中的數(shù)字表示每一級臺階的高度(單位:cm),并且數(shù)據(jù)15,16,16,14,14,15的方差s2,數(shù)據(jù)11,15,18,17,10,19的方差s2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為1的正方形ABCD中,動點F,E分別以相同的速度從D,C兩點同時出發(fā)向C和B運動(任何一個點到達即停止),過點P作PM∥CD交BC于M點,PN∥BC交CD于N點,連接MN,在運動過程中,則下列結(jié)論:
①△ABE≌△BCF;②AE=BF;③AE⊥BF;④CF2=PEBF;⑤線段MN的最小值為
其中正確的結(jié)論有( )

A.2個
B.3個
C.4個
D.5個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某運動品牌店對第一季度A、B兩款運動鞋的銷售情況進行統(tǒng)計.兩款運動鞋的銷售量及總銷售額如圖所示:
(1)一月份B款運動鞋的銷售量是A款的 ,則一月份B款運動鞋銷售了多少雙?
(2)第一節(jié)度這兩款運動鞋的銷售單價保持不變,求三月份的總銷售額(銷售額=銷售單價×銷售量);
(3)綜合第一季度的銷售情況,請你對這兩款運動鞋的進貨、銷售等方面提出一條建議.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合題。

1)如圖,在ABC中,AC=BC,∠ACB=90°,直線l過點C,分別過A、B兩點作ADl于點D,作BEl于點E.求證:DE=AD+BE.

2)如圖,已知RtABC,∠C=90°.用尺規(guī)作圖法作出ABC的角平分線AD;(不寫作法,保留作圖痕跡)

3)若AB=10,CD=3,求ABD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題提出
(1)如圖①,已知△ABC,請畫出△ABC關(guān)于直線AC對稱的三角形.

(2)問題探究
如圖②,在矩形ABCD中,AB=4,AD=6,AE=4,AF=2,是否在邊BC、CD上分別存在點G、H,使得四邊形EFGH的周長最?若存在,求出它周長的最小值;若不存在,請說明理由.

(3)如圖③,有一矩形板材ABCD,AB=3米,AD=6米,現(xiàn)想從此板材中裁出一個面積盡可能大的四邊形EFGH部件,使∠EFG=90°,EF=FG= 米,∠EHG=45°,經(jīng)研究,只有當(dāng)點E、F、G分別在邊AD、AB、BC上,且AF<BF,并滿足點H在矩形ABCD內(nèi)部或邊上時,才有可能裁出符合要求的部件,試問能否裁得符合要求的面積盡可能大的四邊形EFGH部件?若能,求出裁得的四邊形EFGH部件的面積;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】完成下面推理過程:

如圖,已知∠1=2,B=C,可推得ABCD.理由如下:

∵∠1=2(_____________________)

且∠1=CGD(____________________)

∴∠2=CGD(___________________)

CEBF(_______________________)

∴∠_______=C(兩直線平行,同位角相等)

又∵∠B=C(已知),

∴∠BFD=B

ABCD(____________________)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明隨機調(diào)查了若干市民租用公共自行車的騎車時間t(單位:分),將獲得的數(shù)據(jù)分成四組,繪制了如圖統(tǒng)計圖,請根據(jù)圖中信息,解答下列問題:
(1)這次被調(diào)查的總?cè)藬?shù)是多少?
(2)試求表示A組的扇形圓心角的度數(shù),并補全條形統(tǒng)計圖.
(3)如果騎自行車的平均速度為12km/h,請估算,在租用公共自行車的市民中,騎車路程不超過6km的人數(shù)所占的百分比.

查看答案和解析>>

同步練習(xí)冊答案