【題目】下列說法中,正確的是( 。
A. 一個(gè)數(shù)的立方根有兩個(gè),它們互為相反數(shù)B. 負(fù)數(shù)沒有立方根
C. 如果一個(gè)數(shù)有立方根,那么它一定有平方根D. 一個(gè)數(shù)的立方根的符號與被開方數(shù)的符號相同
【答案】D
【解析】
立方根的定義:如果一個(gè)數(shù)的立方等于a,那么這個(gè)數(shù)叫做a的立方根或三次方根.這就是說,如果x3=a,那么x叫做a的立方根.記作:.正數(shù)的立方根是正數(shù),0的立方根是0,負(fù)數(shù)的立方根是負(fù)數(shù).即任意數(shù)都有立方根.依此即可求解.
解:A、一個(gè)數(shù)的立方根只有1個(gè),故選項(xiàng)錯(cuò)誤;
B、負(fù)數(shù)有立方根,故選項(xiàng)錯(cuò)誤;
C、一個(gè)負(fù)數(shù)有立方根,負(fù)數(shù)沒有平方根,故選項(xiàng)錯(cuò)誤;
D、一個(gè)數(shù)的立方根的符號與被開方數(shù)的符號相同是正確的,故選項(xiàng)正確.
故選:D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】葛藤是一種刁鉆的植物,它的腰桿不硬,為了爭奪雨露陽光,常常繞著樹干盤旋而上,它還有一手絕招,就是它繞樹盤升的路線總是沿最短路線——螺旋前進(jìn)的.
通過閱讀以上信息,解決下列問題:
(1)若樹干的周長(即圖中圓柱的底面周長)為30cm,葛藤繞一圈升高(即圓柱的高)40cm,則它爬行一圈的路程是多少?
(2)若樹干的周長為80cm,葛藤繞一圈爬行100cm,它爬行10圈到達(dá)樹頂,則樹干高多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明騎自行車上學(xué),某天他從家出發(fā)騎行了一段路程,想起要買一本書,于是折回到他剛經(jīng)過的某書店,買到書后繼續(xù)去學(xué)校.以下是他在本次上學(xué)離家的距離與所用的時(shí)間的關(guān)系示意圖,根據(jù)圖中提供的信息解答下列問題:
(1)小明家與學(xué)校的距離是_____米.
(2)小明在書店停留了多少分鐘?
(3)從A,B兩題中任選一題作答:
A.小明騎行過程中哪個(gè)時(shí)間段的速度最快,最快的速度是多少?
B.小明在這次上學(xué)過程中的平均速度是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題情境
在綜合與實(shí)踐課上,老師讓同學(xué)們以“兩條平行線AB,CD和一塊含60°角的直角三角尺EFG(∠EFG=90°,∠EGF=60°)”為主題開展數(shù)學(xué)活動(dòng).
操作發(fā)現(xiàn)
(1)如圖(1),小明把三角尺的60°角的頂點(diǎn)G放在CD上,若∠2=2∠1,求∠1的度數(shù);
(2)如圖(2),小穎把三角尺的兩個(gè)銳角的頂點(diǎn)E、G分別放在AB和CD上,請你探索并說明∠AEF與∠FGC之間的數(shù)量關(guān)系;
結(jié)論應(yīng)用
(3)如圖(3),小亮把三角尺的直角頂點(diǎn)F放在CD上,30°角的頂點(diǎn)E落在AB上.若∠AEG=α,則∠CFG等于______(用含α的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某地方政府決定在相距50km的A、B兩站之間的公路旁E點(diǎn),修建一個(gè)土特產(chǎn)加工基地,且使C、D兩村到E點(diǎn)的距離相等,已知DA⊥AB于A,CB⊥AB于B,DA=30km,CB=20km,那么基地E應(yīng)建在離A站多少千米的地方?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠C=90°,
(1)若a=4,b=3,則c=_______;
(2)若a=24,c=30,則b=_______;
(3)若BC=11,AB=61,則AC=_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑, ,連結(jié)AC,過點(diǎn)C作直線l∥AB,點(diǎn)P是直線l上的一個(gè)動(dòng)點(diǎn),直線PA與⊙O交于另一點(diǎn)D,連結(jié)CD,設(shè)直線PB與直線AC交于點(diǎn)E.
(1)求∠BAC的度數(shù);
(2)當(dāng)點(diǎn)D在AB上方,且CD⊥BP時(shí),求證:PC=AC;
(3)在點(diǎn)P的運(yùn)動(dòng)過程中
①當(dāng)點(diǎn)A在線段PB的中垂線上或點(diǎn)B在線段PA的中垂線上時(shí),求出所有滿足條件的∠ACD的度數(shù);
②設(shè)⊙O的半徑為6,點(diǎn)E到直線l的距離為3,連結(jié)BD, DE,直接寫出△BDE的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com