【題目】如圖,在△ABC中,點D,E分別在邊AB,AC上,且BE平分∠ABC,∠ABE=∠ACD,BE,CD交于點F.
(1)求證: ;
(2)請?zhí)骄烤段DE,CE的數(shù)量關(guān)系,并說明理由;
(3)若CD⊥AB,AD=2,BD=3,求線段EF的長.
【答案】(1)證明見解析;(2)DE=CE,理由見解析;(3).
【解析】試題分析:(1)證明△ABE∽△ACD,從而得出結(jié)論;
(2) 先證明∠CDE=∠ACD,從而得出結(jié)論;
(3)解直角三角形示得.
試題解析:
(1)∵∠ABE=∠ACD,∠A=∠A,
∴△ABE∽△ACD,
∴;
(2)∵,
∴,
又∵∠A=∠A,
∴△ADE∽△ACB,
∴∠AED=∠ABC,
∵∠AED=∠ACD+∠CDE,∠ABC=∠ABE+∠CBE,
∴∠ACD+∠CDE=∠ABE+∠CBE,
∵∠ABE=∠ACD,
∴∠CDE=∠CBE,
∵BE平分∠ABC,
∴∠ABE=∠CBE,
∴∠CDE=∠ABE=∠ACD,
∴DE=CE;
(3)∵CD⊥AB,
∴∠ADC=∠BDC=90°,
∴∠A+∠ACD=∠CDE+∠ADE=90°,
∵∠ABE=∠ACD,∠CDE=∠ACD,
∴∠A=∠ADE,∠BEC=∠ABE+∠A=∠A+∠ACD=90°,
∴AE=DE,BE⊥AC,
∵DE=CE,
∴AE=DE=CE,
∴AB=BC,
∵AD=2,BD=3,
∴BC=AB=AD+BD=5,
在Rt△BDC中, ,
在Rt△ADC中, ,
∴,
∵∠ADC=∠FEC=90°,
∴,
∴.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2016四川省達州市)如圖,P是等邊三角形ABC內(nèi)一點,將線段AP繞點A順時針旋轉(zhuǎn)60°得到線段AQ,連接BQ.若PA=6,PB=8,PC=10,則四邊形APBQ的面積為____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠ACB=90°,AC=BC,直線,MN經(jīng)過點C,且AD⊥MN于點D,BE⊥MN于點E。
(1)當直線MN繞點C旋轉(zhuǎn)到如圖1的位置時,求證:DE=AD+BE;
(2)當直線MN繞點C旋轉(zhuǎn)到如圖2的位置時,求證:DE=AD-BE;
(3)當直線MN繞點C旋轉(zhuǎn)到如圖3的位置時,線段DE、AD、BE之間又有什么樣的數(shù)量關(guān)系?請你寫出這個數(shù)量關(guān)系,并證明
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有下列說法:
①2+3x-5x3是三次四項式;②﹣a一定在原點的左邊.③是分數(shù),它是有理數(shù);④有最大的負整數(shù),沒有最大的正整數(shù);⑤近似數(shù)5.60所表示的準確數(shù)x的范圍是:5.55≤x<5.65.其中錯誤的個數(shù)是( 。
A.2B.3C.4D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】先閱讀下列的解題過程,然后回答下列問題.
例:解絕對值方程:.
解:討論:①當時,原方程可化為,它的解是;
②當時,原方程可化為,它的解是.
原方程的解為或.
(1)依例題的解法,方程算的解是_______;
(2)嘗試解絕對值方程:;
(3)在理解絕對值方程解法的基礎(chǔ)上,解方程:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AD=,F是DA延長線上一點,G是CF上一點,且∠ACG=∠AGC,∠GAF=∠F=20°,則AB= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某服裝店用4500元購進一批襯衫,很快售完,服裝店老板又用2100元購進第二批該款式的襯衫,進貨量是第一次的一半,但進價每件比第一批降低了10元.
(1)這兩次各購進這種襯衫多少件?
(2)若第一批襯衫的售價是200元/件,老板想讓這兩批襯衫售完后的總利潤不低于1950元,則第二批襯衫每件至少要售多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市銷售一種商品,成本每千克40元,規(guī)定每千克售價不低于成本,且不高于80元,經(jīng)市場調(diào)查,每天的銷售量y(千克)與每千克售價x(元)滿足一次函數(shù)關(guān)系,部分數(shù)據(jù)如下表:
售價x(元/千克) | 50 | 60 | 70 |
銷售量y(千克) | 100 | 80 | 60 |
(1)求y與x之間的函數(shù)表達式;
(2)設(shè)商品每天的總利潤為W(元),求W與x之間的函數(shù)表達式(利潤=收入﹣成本),并指出售價為多少元時獲得最大利潤,最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在矩形紙片ABCD中,AB=3cm,AD=5cm,折疊紙片使B點落在邊AD上的E處,折痕為PQ,過點E作EF∥AB交PQ于F,連接BF.
(1)求證:四邊形BFEP為菱形;
(2)當點E在AD邊上移動時,折痕的端點P、Q也隨之移動;
①當點Q與點C重合時(如圖2),求菱形BFEP的邊長;
②若限定P、Q分別在邊BA、BC上移動,求出點E在邊AD上移動的最大距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com