如圖,某公路隧道橫截面為拋物線,其最大高度為6米,底部寬度OM為12米. 現(xiàn)以O點為原點,OM所在直線為x軸建立直角坐標系.
【小題1】直接寫出點M及拋物線頂點P的坐標;
【小題2】求這條拋物線的解析式;
【小題3】若要搭建一個矩形“支撐架”AD- DC- CB,
使C、D點在拋物線上,A、B點在地面OM上,
科目:初中數(shù)學 來源: 題型:填空題
如圖,以扇形OAB的頂點O為原點,半徑OB所在的直線為x軸,建立平面直角坐標系,點B的坐標為(2,0),若拋物線與扇形OAB的邊界總有兩個公共點,則實數(shù)k的取值范圍是
.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
如圖,是二次函數(shù)y=ax2+bx+c(a≠0)的圖象的一部分,
給出下列命題:
①abc<0;②b>2a;③a+b+c=0
④ax2+bx+c=0的兩根分別為﹣3和1;
⑤8a+c>0.其中正確的命題是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
我市高新技術開發(fā)區(qū)的某公司,用480萬元購得某種產(chǎn)品的生產(chǎn)技術后,并進一步投入資金1520萬元購買生產(chǎn)設備,進行該產(chǎn)品的生產(chǎn)加工,已知生產(chǎn)這種產(chǎn)品每件還需成本費40元.經(jīng)過市場調研發(fā)現(xiàn):該產(chǎn)品的銷售單價,需定在100元到300元之間較為合理.當銷售單價定為100元時,年銷售量為20萬件;當銷售單價超過100元,但不超過200元時,每件新產(chǎn)品的銷售價格每增加10元,年銷售量將減少0.8萬件;當銷售單價超過200元,但不超過300元時,每件產(chǎn)品的銷售價格每增加10元,年銷售量將減少1萬件.設銷售單價為x(元),年銷售量為y(萬件),年獲利為w(萬元).(年獲利=年銷售額-生產(chǎn)成本-投資成本)
(1)直接寫出y與x之間的函數(shù)關系式;
(2)求第一年的年獲利w與x間的函數(shù)關系式,并說明投資的第一年,該公司是盈利還是虧損?若盈利,最大利潤是多少?若虧損,最少虧損是多少?
(3)若該公司希望到第二年底,除去第一年的最大盈利(或最小虧損)后,兩年的總盈利不低于1842元,請你確定此時銷售單價的范圍.在此情況下,要使產(chǎn)品銷售量最大,銷售單價應定為多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖,已知拋物線與x軸交于A,B兩點,對稱軸為直線,直線AD交拋物線于點D(2,3).
(1)求拋物線的解析式;
(2)已知點M為第三象限內拋物線上的一動點,當點M在什么位置時四邊形AMCO的面積最大?并求出最大值;
(3)當四邊形AMCO面積最大時,過點M作直線平行于y軸,在這條直線上是否存在一個以Q點為圓心,OQ為半徑且與直線BC相切的圓?若存在,求出圓心Q的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
某經(jīng)銷商銷售一種產(chǎn)品,這種產(chǎn)品的成本價為10元/千克,已知銷售價不低于成本價,且物價部門規(guī)定這種產(chǎn)品的銷售價不高于18元/千克,市場調查發(fā)現(xiàn),該產(chǎn)品每天的銷售量y(千克)與銷售價x(元/千克)之間的函數(shù)關系如圖所示:
(1)求y與x之間的函數(shù)關系式,并寫出自變量x的取值范圍;
(2)求每天的銷售利潤W(元)與銷售價x(元/千克)之間的函數(shù)關系式.當銷售價為多少時,每天的銷售利潤最大?最大利潤是多少?
(3)該經(jīng)銷商想要每天獲得150元的銷售利潤,銷售價應定為多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
在平面直角坐標系xOy中,拋物線y=x2﹣(m+n)x+mn(m>n)與x軸相交于A、B兩點(點A位于點B的右側),與y軸相交于點C.
(1)若m=2,n=1,求A、B兩點的坐標;
(2)若A、B兩點分別位于y軸的兩側,C點坐標是(0,﹣1),求∠ACB的大;
(3)若m=2,△ABC是等腰三角形,求n的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com