如圖,等邊三角形ABC中,D、E分別為AB、BC邊上的點(diǎn),AD=BE,AE與CD交于點(diǎn)F,AG⊥CD于點(diǎn)G,則的值為   
【答案】分析:首先證明△CAD≌△ABE,得出∠ACD=∠BAE,證明∠AFG=60°.
解答:解:在△CAD與△ABE中,
AC=AB,∠CAD=∠ABE=60°,AD=BE,
∴△CAD≌△ABE.
∴∠ACD=∠BAE.
∵∠BAE+∠CAE=60°,
∴∠ACD+∠CAE=60°.
∴∠AFG=∠ACD+∠CAE=60°.
在直角△AFG中,
∵sin∠AFG=,
=
點(diǎn)評(píng):本題主要考查了全等三角形的判定、性質(zhì),等邊三角形、三角形的外角的性質(zhì),特殊角的三角函數(shù)值及三角函數(shù)的定義.綜合性強(qiáng),有一定難度.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖,等邊三角形AOB的頂點(diǎn)A在反比例函數(shù)y=
3
x
(x>0)的圖象上,點(diǎn)B在x軸上.
(1)求點(diǎn)B的坐標(biāo);
(2)求直線(xiàn)AB的函數(shù)表示式;
(3)在y軸上是否存在點(diǎn)P,使△OAP是等腰三角形?若存在,直接把符合條件的點(diǎn)P的坐標(biāo)都寫(xiě)出來(lái);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,等邊三角形ABC中,D、E分別為AB、BC邊上的兩動(dòng)點(diǎn),且總使AD=BE,AE與CD交于點(diǎn)F,AG⊥CD于點(diǎn)G,則
FG
AF
=( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,等邊三角形ABC的邊長(zhǎng)為6,點(diǎn)D,E分別在邊AB,AC上,且AD=AE=2.若點(diǎn)F從點(diǎn)B開(kāi)始以每秒1個(gè)單位長(zhǎng)的速度沿射線(xiàn)BC方向運(yùn)動(dòng),設(shè)點(diǎn)F運(yùn)動(dòng)的時(shí)間為t秒.當(dāng)t>0時(shí),直線(xiàn)FD與過(guò)點(diǎn)A且平行于BC的直線(xiàn)相交于點(diǎn)G,GE的延長(zhǎng)線(xiàn)與BC的延長(zhǎng)線(xiàn)相交于點(diǎn)H,AB與GH相交于點(diǎn)O.
(1)設(shè)△EGA的面積為S,寫(xiě)出S與t的函數(shù)關(guān)系式;
(2)當(dāng)t為何值時(shí),AB⊥GH.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,等邊三角形ABC的邊長(zhǎng)為a,若D、E、F、G分別為AB、AC、CD、BF的中點(diǎn),則△BEG的面積是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:013

已知:如圖,在等邊三角形AB,AD=BE=CF,D,E,F不是各邊的中點(diǎn),AE,BF,CD分別交于P,M,N在每一組全等三角形中,有三個(gè)三角形全等,在圖中全等三角形的組數(shù)是

[    ]

A.5   B.4    C.3   D.2

 

查看答案和解析>>

同步練習(xí)冊(cè)答案