【題目】為了貫徹落實(shí)《關(guān)于開展全市義務(wù)教育學(xué)生體質(zhì)抽測(cè)工作的通知》精神,推進(jìn)青少年茁壯成長(zhǎng)工程,我市決定繼續(xù)開展市直初中生體質(zhì)抽測(cè)工作。我校初三某班被抽中,已知各人選測(cè)項(xiàng)目為下列選項(xiàng)中的任意一項(xiàng):引體向上(男生)、仰臥起坐(女生)、立定跳遠(yuǎn)(男、女生),坐位體前屈(男、女生)。

1)男生小磊抽測(cè)引體向上的概率是 ;

2)用樹狀圖或列表法求男生小磊與女生小銘恰好都抽測(cè)坐位體前屈的概率.

【答案】1;(2.

【解析】

1)根據(jù)概率公式計(jì)算即可;

2)畫出樹狀圖,根據(jù)概率公式求解即可.

解:(1)男生一共有3種項(xiàng)目,則抽測(cè)引體向上的概率是:;

2)樹狀圖如下:

由樹狀圖可知,一共有9種等可能情況,其中男生小磊與女生小銘恰好都抽測(cè)坐位體前屈有一種可能,故P都抽測(cè)坐位體前屈=.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,平行四邊形ABCD,對(duì)角線AC與BD相交于點(diǎn)E,點(diǎn)G為AD的中點(diǎn),連接CG,CG的延長(zhǎng)線交BA的延長(zhǎng)線于點(diǎn)F,連接FD.

(1)求證:AB=AF;

(2)若AG=AB,∠BCD=120°,判斷四邊形ACDF的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形OABC中,點(diǎn)O為原點(diǎn),點(diǎn)A的坐標(biāo)為(0,8),點(diǎn)C的坐標(biāo)為(6,0).拋物線y=﹣x2+bx+c經(jīng)過(guò)點(diǎn)A、C,與AB交于點(diǎn)D

(1)求拋物線的函數(shù)解析式;

(2)點(diǎn)P為線段BC上一個(gè)動(dòng)點(diǎn)(不與點(diǎn)C重合),點(diǎn)Q為線段AC上一個(gè)動(dòng)點(diǎn),AQCP,連接PQ,設(shè)CPm,△CPQ的面積為S

S關(guān)于m的函數(shù)表達(dá)式;

當(dāng)S最大時(shí),在拋物線y=﹣x2+bx+c的對(duì)稱軸l上,若存在點(diǎn)F,使△DFQ為直角三角形,請(qǐng)直接寫出所有符合條件的點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,反比例函數(shù)y= 的圖象與一次函數(shù)y=x+b的圖象交

于點(diǎn)A(1,4)、點(diǎn)B(-4,n).

(1)求一次函數(shù)和反比例函數(shù)的解析式;

(2)求△OAB的面積;

(3)直接寫出一次函數(shù)值大于反比例函數(shù)值的自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD是矩形,EBD上的一點(diǎn),∠BAE=∠BCE,∠AED=∠CED,點(diǎn)GBC,AE延長(zhǎng)線的交點(diǎn),AGCD相交于點(diǎn)F

1)求證:四邊形ABCD是正方形;

2)當(dāng)AE3EF,DF1時(shí),求GF的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,定義:直線 (m<0, n>0) x、y軸分別相交于AB兩點(diǎn),將△AOB繞著點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°得到△COD,過(guò)點(diǎn)AB、D的拋物線P叫做直線l的“糾纏拋物線”,反之,直線l叫做P的“糾纏直線”,兩線“互為糾纏線”。

1 ,則糾纏拋物線P的函數(shù)解析式是

2 判斷并說(shuō)明是否“互為糾纏線”.

3 如圖②,若糾纏直線,糾纏拋物線P的對(duì)稱軸與CD相交于點(diǎn)E,點(diǎn)Fl上,點(diǎn)QP的對(duì)稱軸上,當(dāng)以點(diǎn)CE、Q、F為頂點(diǎn)的四邊形是以CE為一邊的平行四邊形時(shí),求點(diǎn)Q的坐標(biāo).

4 如圖③,在(3)的條件下,G為線段AB上的一個(gè)動(dòng)點(diǎn),G點(diǎn)隨著△AOB旋轉(zhuǎn)到線段CD上的H點(diǎn),連接HG,取HG的中點(diǎn)M,當(dāng)點(diǎn)GA開始運(yùn)動(dòng)到B點(diǎn),直接寫出點(diǎn)M的運(yùn)動(dòng)路徑長(zhǎng)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)與反比例函數(shù)的圖象交于A1,4),B4n)兩點(diǎn).

1)求反比例函數(shù)和一次函數(shù)的解析式;

2)直接寫出當(dāng)x0時(shí),的解集.

3)點(diǎn)Px軸上的一動(dòng)點(diǎn),試確定點(diǎn)P并求出它的坐標(biāo),使PA+PB最小.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC,AB=AC,點(diǎn)MBA的延長(zhǎng)線上.

(1)按下列要求作圖,并在圖中標(biāo)明相應(yīng)的字母.(保留作圖痕跡)

①作∠MAC的平分線AN;

②作AC的中點(diǎn)O,連結(jié)BO,并延長(zhǎng)BOAN于點(diǎn)D,連結(jié)CD;

(2)(1)的條件下,判斷四邊形ABCD的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,以Rt△ABC的直角邊AB為直徑作⊙O與斜邊AC交于點(diǎn)D,E為BC邊的中點(diǎn),連接DE、OE.

(1)求證:DE是⊙O的切線;

(2)填空:

①當(dāng)∠CAB= 時(shí),四邊形AOED是平行四邊形;

②連接OD,在①的條件下探索四邊形OBED的形狀為

查看答案和解析>>

同步練習(xí)冊(cè)答案