【題目】某工廠承接了一批紙箱加工任務,用如圖1所示的長方形和正方形紙板(長方形的寬與正方形的邊長相等)加工成如圖所示的豎式與橫式兩種無蓋的長方形紙箱.(加工時接縫材料不計)
(1)若該廠購進正方形紙板1000張,長方形紙板2000張.問豎式紙盒,橫式紙盒各加工多少個,恰好能將購進的紙板全部用完;
(2)該工廠某一天使用的材料清單上顯示,這天一共使用正方形紙板50張,長方形紙板a張,全部加工成上述兩種紙盒,且120<a<136,試求在這一天加工兩種紙盒時,a的所有可能值.
【答案】
(1)
解:設加工豎式紙盒x個,加工橫式紙盒y個,
依題意,得
解得:
答:加工豎式紙盒200個,加工橫式紙盒400個
(2)
解:設加工豎式紙盒x個,加工橫式紙盒y個,
依題意得:
∴y=40﹣,
∵y、a為正整數(shù),
∴a為5的倍數(shù),
∵120<a<136
∴滿足條件的a為:125,130,135.
當a=125時,x=20,y=15;
當a=130時,x=22,y=14;
當a=135時,x=24,y=13
【解析】(1)設加工豎式紙盒x個,加工橫式紙盒y個,每個豎式紙盒需要1張正方形紙板,需要4張長方形紙板;每個橫式紙盒需要2個正方形紙板,需要3個張長方形紙板;等量關系1:豎式用的正方形總數(shù)量+橫式用的正方形總數(shù)量=正方形總數(shù)量;等量關系2:豎式用的長方形總數(shù)量+橫式用的長方形總數(shù)量=長方形總數(shù)量.
(2)與(1)同理出方程,用a來表示x,y中的一個,根據(jù)120<a<136,確定a可能的值,再分別求出x,y的值.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A(0,8),點B(4,0),連接AB,點M,N分別是OA,AB的中點,在射線MN上有一動點P.若△ABP是直角三角形,則點P的坐標是__.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,直線y=-x+3與x軸交于點C,與直線AD交于點A(, ),點D的坐標為(0,1).
(1)求直線AD的解析式;
(2)直線AD與x 軸交于點B,若點E是直線AD上一動點(不與點B重合),當△BOD與△BCE相似時,求點E的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了打造區(qū)域中心城市,實現(xiàn)跨越式發(fā)展,我市新區(qū)建設正按投資計劃有序推進.新區(qū)建設工程部,因道路建設需要開挖土石方,計劃每小時挖掘土石方540m3 , 現(xiàn)決定向某大型機械租賃公司租用甲、乙兩種型號的挖掘機來完成這項工作,租賃公司提供的挖掘機有關信息如表:
租金(單位:元/臺時) | 挖掘土石方量(單位:m3/臺時) | |
甲型挖掘機 | 100 | 60 |
乙型挖掘機 | 120 | 80 |
(1)若租用甲、乙兩種型號的挖掘機共8臺,恰好完成每小時的挖掘量,則甲、乙兩種型號的挖掘機各需多少臺?
(2)如果每小時支付的租金不超過850元,又恰好完成每小時的挖掘量,那么共有幾種不同的租用方案?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中, A,B,C 為坐標軸上的三點,且OA=OB=OC=4,過點A 的直線AD 交BC 于點D,交y 軸于點G,△ABD 的面積為8.過點C 作CE⊥AD,交AB 交于F,垂足為E.
(1)求D 點的坐標;
(2)求證:OF=OG;
(3)在第一象限內是否存在點P,使得△CFP 為等腰直角三角形?若存在,請求出點P 的坐標,若不存在,請說明理由。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知函數(shù)y=(12m)x+m+1,求當m為何值時.
(1)y隨x的增大而增大?
(2)圖象經(jīng)過第一、二、四象限?
(3)圖象經(jīng)過第一、三象限?
(4)圖象與y軸的交點在x軸的上方?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com