如圖,菱形ABCD中,點(diǎn)M,N在AC上,ME⊥AD,NF⊥AB.若NF=NM=2,ME=3,則AN=( 。
A.3B.4C.5D.6

在菱形ABCD中,∠1=∠2,
又∵M(jìn)E⊥AD,NF⊥AB,
∴∠AEM=∠AFN=90°,
∴△AFN△AEM,
AN
AM
=
NF
ME
,
AN
AN+2
=
2
3
,
解得AN=4.
故選B.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在梯形ABCD中,ABDC,過對角線AC的中點(diǎn)O作EF⊥AC,分別交邊AB,CD于點(diǎn)E、F,連接CE,AF.
(1)求證:四邊形AECF是菱形;
(2)若EF=4,tan∠OAE=
2
3
,求四邊形AECF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

從菱形的鈍角頂點(diǎn),向?qū)堑膬蛇厳l垂線,垂足恰好在該邊的中點(diǎn),則菱形的內(nèi)角中鈍角的度數(shù)是( 。
A.150°B.135°C.120°D.100°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2.點(diǎn)O是AC的中點(diǎn),過點(diǎn)O的直線l與AB邊相交于點(diǎn)D.過點(diǎn)C作CEAB交直線l于點(diǎn)E,設(shè)∠AOD=α.
(1)當(dāng)α等于多少度時,四邊形EDBC是等腰梯形?并求此時AD的長;
(2)當(dāng)α=90°時,判斷四邊形EDBC是否為菱形,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在△ABC中,D是BC邊的中點(diǎn),F(xiàn),E分別是AD及其延長線上的點(diǎn),CFBE.
(1)求證:△BDE≌△CDF;
(2)請連接BF,CE,試判斷四邊形BECF是何種特殊四邊形,并說明理由;
(3)在(2)下要使BECF是菱形,則△ABC應(yīng)滿足何條件?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在菱形ABCD中,∠A=60°,E、F分別是AB,AD的中點(diǎn),DE、BF相交于點(diǎn)G,連接BD,CG.有下列結(jié)論,其中正確的有______(填正確結(jié)論的序號).
①∠BGD=120°;②BG+DG=CG;③△BDF≌△CGB;④S△ABD=AB2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知在四邊形ABFC中∠ACB=90°,BC的垂直平分線EF交BC于點(diǎn)D,交AB于點(diǎn)E,且CF=AE.
(1)試探究,四邊形BECF是什么特殊的四邊形并證明之;
(2)若四邊形BECF的面積是6cm2且BC+AC=
105
cm時.求AB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(1)如圖,在△ABC中,AB=AC,點(diǎn)D、E、F分別是△ABC三邊的中點(diǎn).求證:四邊形ADEF是菱形.
(2)一艘輪船在靜水中的最大航速為20千米/時,它沿江以最大航速順流航行100千米所用時間與以最大航速逆流航行60千米所用時間相等,江水的流速為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在梯形ABCD中,∠ABC=90°,ADBC,BC>AD,AB=8cm,BC=18cm,CD=10cm,點(diǎn)P從點(diǎn)B開始沿BC邊向終點(diǎn)C以每秒3cm的速度移動,點(diǎn)Q從點(diǎn)D開始沿DA邊向終點(diǎn)A以每秒2cm的速度移動,設(shè)運(yùn)動時間為t秒.
(1)求四邊形ABPQ為矩形時t的值;
(2)若題設(shè)中的“BC=18cm”改變?yōu)椤癇C=kcm”,其它條件都不變,要使四邊形PCDQ是等腰梯形,求t與k的函數(shù)關(guān)系式,并寫出k的取值范圍;
(3)在移動的過程中,是否存在t使P、Q兩點(diǎn)的距離為10cm?若存在求t的值,若不存在請說明理由.

查看答案和解析>>

同步練習(xí)冊答案