【題目】如圖,在菱形ABCD中,AB=BD.點E、F分別在AB、AD上,且AE=DF.連接BF與DE相交于點G,連接CG與BD相交于點H.下列結(jié)論:①△AED≌△DFB; ②S四邊形BCDG=CG2;③DE=CG;④若AF=2DF,則BG=6GF.其中正確的結(jié)論_____________.
【答案】1 2 4
【解析】分析:(1)由已知條件易得∠A=∠BDF=60°,結(jié)合BD=AB=AD,AE=DF,即可證得△AED≌△DFB,從而說明結(jié)論①正確;(2)由已知條件可證點B、C、D、G四點共圓,從而可得∠CDN=∠CBM,如圖,過點C作CM⊥BF于點M,過點C作CN⊥ED于點N,結(jié)合CB=CD即可證得△CBM≌△CDN,由此可得S四邊形BCDG=S四邊形CMGN=2S△CGN,在Rt△CGN中,由∠CGN=∠DBC=60°,∠CNG=90°可得GN=CG,CN=CG,由此即可求得S△CGN=CG2,從而可得結(jié)論②是正確的;(3)由已知易得△ADE中,∠AED>∠A=60°,從而可得AD>DE;在△DCG中,∠CDG>∠CGD=60°,從而可得CG>DC;結(jié)合AD=CD即可得到CG>DE,從而說明結(jié)論③錯誤;(4)過點F作FK∥AB交DE于點K,由此可得△DFK∽△DAE,△GFK∽△GBE,結(jié)合AF=2DF和相似三角形的性質(zhì)即可證得結(jié)論④成立.
詳解:
(1)∵四邊形ABCD是菱形,BD=AB,
∴AB=BD=BC=DC=DA,
∴△ABD和△CBD都是等邊三角形,
∴∠A=∠BDF=60°,
又∵AE=DF,
∴△AED≌△DFB,即結(jié)論①正確;
(2)∵△AED≌△DFB,△ABD和△DBC是等邊三角形,
∴∠ADE=∠DBF,∠DBC=∠CDB=∠BDA=60°,
∴∠GBC+∠CDG=∠DBF+∠DBC+∠CDB+∠GDB=∠DBC+∠CDB+∠GDB+∠ADE=∠DBC+∠CDB+∠BDA=180°,
∴點B、C、D、G四點共圓,
∴∠CDN=∠CBM,
如下圖,過點C作CM⊥BF于點M,過點C作CN⊥ED于點N,
∴∠CDN=∠CBM=90°,
又∵CB=CD,
∴△CBM≌△CDN,
∴S四邊形BCDG=S四邊形CMGN=2S△CGN,
∵在Rt△CGN中,∠CGN=∠DBC=60°,∠CNG=90°
∴GN=CG,CN=CG,
∴S△CGN=CG2,
∴S四邊形BCDG=2S△CGN,=CG2,即結(jié)論②是正確的;
(3)∵在△ABD是等邊三角形,
∴∠A=60°,∠AED>∠ABD=60°,
∴∠AED>∠A,
∴DE<AD,
同理,在△DGC中:∠GDC>∠DGC,
∴CG>CD,
∵AD=CD,
∴DE<CG,即結(jié)論③錯誤;
(4)如下圖,過點F作FK∥AB交DE于點K,
∴△DFK∽△DAE,△GFK∽△GBE,
∴,,
∵AF=2DF,
∴,
∵AB=AD,AE=DF,AF=2DF,
∴BE=2AE,
∴,
∴BG=6FG,即結(jié)論④成立.
綜上所述,本題中正確的結(jié)論是:
故答案為:①②④.
科目:初中數(shù)學 來源: 題型:
【題目】(1)請畫出△ABC關(guān)于y軸對稱的△A'B'C'(其中A',B',C'分別是A,B,C的對應(yīng)點,不寫畫法).
(2)直接寫出A′,B′,C'三點的坐標:A'_______,B'______,C'______;
(3)△ABC的面積為_______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD中,AB=20,BC=15,CD=7,AD=24,∠B=90°.
(1)判斷∠D是否是直角,并說明理由.
(2)求四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“中國夢”是中華民族每一個人的夢,也是每一個中小學生的夢,各中小學開展經(jīng)典誦讀活動,無疑是“中國夢”教育這一宏大樂章里的響亮音符,學校在經(jīng)典誦讀活動中,對全校學生用A、B、C、D四個等級進行評價,現(xiàn)從中抽取若干個學生進行調(diào)查,繪制出了兩幅不完整的統(tǒng)計圖,請你根據(jù)圖中信息解答下列問題:
(1)共抽取了多少個學生進行調(diào)查?
(2)將圖甲中的折線統(tǒng)計圖補充完整.
(3)求出圖乙中B等級所占圓心角的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知,等腰Rt△OAB中,∠AOB=90°,等腰Rt△EOF中,∠EOF=90°,連結(jié)AE、BF.
求證:(1)AE=BF;(2)AE⊥BF.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】高空的氣溫與距地面的高度有關(guān),某地距地面的高度每升高1km,氣溫下降6℃,已知地面氣溫為20℃.
(1)寫出該地空中氣溫T(℃)與高度h(km)之間的函數(shù)表達式.
(2)求距離地面上4km處的氣溫T.
(3)求氣溫為-16℃處距地面的高度h.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:方格紙中的每個小方格都是邊長為1個單位的正方形,在建立平面直角坐標系后,△ABC的頂點均在格點上,點C的坐標為(4,-1).
(1)請以y軸為對稱軸,畫出與△ABC對稱的△A1B1C1,并直接寫出點A1、B1、C1的坐標;
(2)△ABC的面積是 .
(3)點P(a+1,b-1)與點C關(guān)于x軸對稱,則a= ,b= .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】對于一個函數(shù),如果它的自變量 x 與函數(shù)值 y 滿足:當1≤x≤1 時,1≤y≤1,則稱這個函數(shù)為“閉 函數(shù)”.例如:y=x,y=x 均是“閉函數(shù)”. 已知 y ax2 bx c(a0) 是“閉函數(shù)”,且拋物線經(jīng)過點 A(1,1)和點 B(1,1),則 a 的取值范圍是______________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,反比例函數(shù)y=的圖象經(jīng)過點(﹣1,﹣2),點A是該圖象第一象限分支上的動點,連結(jié)AO并延長交另一分支于點B,以AB為斜邊作等腰直角三角形ABC,頂點C在第四象限,AC與x軸交于點D,當時,則點C的坐標為______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com