【題目】如圖,已知A、B、C、D為矩形的四個頂點,,,動點P、Q分別從點A、C同時出發(fā),點P以的速度向點B移動,一直到點B為止,點Q以的速度向點D移動,設移動時間為,問:
當t為何值時,P、Q兩點間的距離是10cm?
當t為何值時,P、Q兩點間距離最?最小距離為多少?
、Q兩點間距離能否是18cm?若能,求出t的值;若不能,請說明理由.
【答案】(1)P、Q出發(fā)和秒時,P,Q間的距離是10厘米;(2)時,PQ最小,最小為6;(3)兩點間距離不能是18cm.
【解析】
(1)可通過構(gòu)建直角三角形來求解.過Q作QM⊥AB于M,如果設出發(fā)x秒后,QP=10厘米.那么可根據(jù)路程=速度×時間,用未知數(shù)表示出PM、PQ的值,然后在直角三角形PMQ中,求出未知數(shù)的值.
(2)在直角三角形PMQ中,PM為0時,PQ就最小,那么可根據(jù)這個條件和(1)中用勾股定理得出的PQ的式子,讓PM=0,得出此時時間的值.
(3)利用勾股定理求得線段AC的長,與18比較即可得到結(jié)論.
解:設出發(fā)t秒后P、Q兩點間的距離是10厘米.
則,,作QM⊥AB于M,
則,
,
解得:或,
答:P、Q出發(fā)和秒時,P,Q間的距離是10厘米;
(2)∵PQ=,
∴當時,即時,PQ最小,最小為6;
(3)∵AC=<18,
∴P、Q兩點間距離不能是18cm.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將邊長為2cm的正方形ABCD沿其對角線AC剪開,再把△ABC沿著AD方向平移,得到△A′B′C′,若兩個三角形重疊部分的面積為1cm2,則它移動的距離AA′等于( )
A. 0.5cm B. 1cm C. 1.5cm D. 2cm
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場一種商品的進價為每件30元,售價為每件40元.每天可以銷售48件,為盡快減少庫存,商場決定降價促銷.
(1)若該商品連續(xù)兩次下調(diào)相同的百分率后售價降至每件32.4元,求兩次下降的百分率;
(2)經(jīng)調(diào)查,若每降價0.5元,每天可多銷售4件,那么每天要想獲得510元的利潤,每件應降價多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如果三角形的兩個內(nèi)角α與β滿足2α+β=90°,那么我們稱這樣的三角形為“準互余三角形”.
(1)若△ABC是“準互余三角形”,∠C>90°,∠A=60°,則∠B= °;
(2)如圖①,在Rt△ABC中,∠ACB=90°,AC=4,BC=5.若AD是∠BAC的平分線,不難證明△ABD是“準互余三角形”.試問在邊BC上是否存在點E(異于點D),使得△ABE也是“準互余三角形”?若存在,請求出BE的長;若不存在,請說明理由.
(3)如圖②,在四邊形ABCD中,AB=7,CD=12,BD⊥CD,∠ABD=2∠BCD,且△ABC是“準互余三角形”,求對角線AC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將邊長為2cm的正方形ABCD沿其對角線AC剪開,再把△ABC沿著AD方向平移,得到△A′B′C′,若兩個三角形重疊部分的面積為1cm2,則它移動的距離AA′等于( )
A. 0.5cm B. 1cm C. 1.5cm D. 2cm
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線的函數(shù)表達式為,它與軸、軸的交點分別為A、B兩點.
(1)求點A、B的坐標;
(2)設F是軸上一動點,⊙P經(jīng)過點B且與軸相切于點F,設⊙P的圓心坐標為P(x,y),求y與之間的函數(shù)關(guān)系;
(3)是否存在這樣的⊙P,既與軸相切,又與直線相切于點B?若存在,求出圓心P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義:若△ABC中,其中一個內(nèi)角是另一個內(nèi)角的一半,則稱△ABC為“半角三角形”.
(1)若Rt△ABC為半角三角形,∠A=90°,則其余兩個角的度數(shù)為.
(2)如圖,以△ABC的邊AB為直徑畫圓,與邊AC交于M,與邊BC交于N,已知CN=AC
①求證:∠C=60°.
②若△ABC是半角三角形,求∠B的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如果拋物線C1的頂點在拋物線C2上,同時,拋物線C2的頂點在拋物線C1上,那么我們稱拋物線C1與C2關(guān)聯(lián).
(1)已知拋物線C1:y=﹣2x2+4x+3與C2:y=2x2+4x﹣1,請判斷拋物線C1與拋物線C2是否關(guān)聯(lián),并說明理由.
(2)拋物線C1:,動點P的坐標為(t,2),將拋物線繞點P旋轉(zhuǎn)180°得到拋物線C2,若拋物線C1與C2關(guān)聯(lián),求拋物線C2的解析式.
(3)點A為拋物線C1:的頂點,點B為拋物線C1關(guān)聯(lián)的拋物線的頂點,是否存在以AB為斜邊的等腰直角三角形ABC,使其直角頂點C在直線x=﹣10上?若存在,求出C點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,正方形OABC的頂點O與坐標原點重合,點C的坐標為(0,3),點A在x軸的負半軸上,點D、M分別在邊AB、OA上,且AD=2DB,AM=2MO,一次函數(shù)y=kx+b的圖象過點D和M,反比例函數(shù)y=的圖象經(jīng)過點D,與BC的交點為N.
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)若點P在直線DM上,且使△OPM的面積與四邊形OMNC的面積相等,求點P的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com