【題目】如圖,BD是等邊三角形ABC的角平分線(xiàn),EBC延長(zhǎng)線(xiàn)上的一點(diǎn),且CE=CDDF=BC,垂足為FBFEF相等嗎?為什么?

【答案】BFEF相等,證明見(jiàn)解析.

【解析】

根據(jù)等邊三角形的性質(zhì)得∠ABC=ACB=60°,再由BD是角平分線(xiàn)得∠CBD=30°,接著根據(jù)等腰三角形的性質(zhì),由CD=CE得到∠CDE=E,利用三角形外角性質(zhì)可計(jì)算出∠E=30°,所以∠DBE=E,于是可判斷△DBE為等腰三角形,然后根據(jù)等腰三角形的性質(zhì)可得BF=EF

BFEF相等。理由如下:

∵△ABC為等邊三角形,

∴∠ABC=ACB=60°,

BD是等邊三角形ABC的角平分線(xiàn),

∴∠CBD=30°,

CD=CE

∴∠CDE=E,

而∠BCD=CDE+E=60°,

∴∠E=30°,

∴∠DBE=E,

∴△DBE為等腰三角形,

DFBC,

BF=EF.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形OABC的頂點(diǎn)AC分別在軸和軸上,點(diǎn)B的坐標(biāo)為23。雙曲線(xiàn)的圖像經(jīng)過(guò)BC的中點(diǎn)D,且與AB交于點(diǎn)E,連接DE。

1)求k的值及點(diǎn)E的坐標(biāo);

2)若點(diǎn)F是邊上一點(diǎn),且FBC∽△DEB,求直線(xiàn)FB的解析式

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形ABCD中,AB=2,DAB=60°,點(diǎn)EAD邊的中點(diǎn),點(diǎn)MAB邊上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)A重合),延長(zhǎng)MECD的延長(zhǎng)線(xiàn)于點(diǎn)N,連接MD,AN.

(1)求證:△NDE≌△MAE;

(2)求證:四邊形AMDN是平行四邊形;

(3)當(dāng)AM的值為何值時(shí),四邊形AMDN是矩形?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在第1個(gè)△A1BC,B=30°,A1B=CB;在邊A1B上任取一點(diǎn)D,延長(zhǎng)CA1A2,使A1A2=A1D,得到第2個(gè)△A1A2D,在邊A2D上任取一點(diǎn)E,延長(zhǎng)A1A2A3,使A2A3=A2E,得到第3個(gè)△A2A3E,…按此做法繼續(xù)下去,則第n個(gè)三角形中以An為頂點(diǎn)的內(nèi)角度數(shù)是______。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC,△ADE是等邊三角形,B,C,D在同一直線(xiàn)上.

求證:(1)CE=AC+CD;(2)∠ECD=60°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了測(cè)量被池塘隔開(kāi)的A,B兩點(diǎn)之間的距離,根據(jù)實(shí)際情況,作出如圖圖形,其中ABBE,EFBE,AF交BE于D,C在BD上.有四位同學(xué)分別測(cè)量出以下四組數(shù)據(jù):BC,ACB; CD,ACB,ADB;EF,DE,BD;DE,DC,BC.能根據(jù)所測(cè)數(shù)據(jù),求出A,B間距離的有【 】

A.1組 B.2組 C.3組 D.4組

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠ABC=∠ACB,BDCD、BE分別平分△ABC的內(nèi)角∠ABC、外角∠ACP、外角∠MBC.以下結(jié)論:①ADBC;②DBBE;③∠BDC+ABC90°;④∠A+2BEC180°;⑤DB平分∠ADC.其中正確的結(jié)論有( 。

A.2個(gè)B.3個(gè)C.4個(gè)D.5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知ABC是等邊三角形,點(diǎn)D、E分別在AC、BC上,且CD=BE,

(1)求證:ABE≌△BCD

(2)求出AFB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將矩形紙片ABCD中,AB6BC9,沿EF折疊,使點(diǎn)B落在DC邊上點(diǎn)P處,點(diǎn)A落在Q處,ADPQ相交于點(diǎn)H

1)如圖1,當(dāng)點(diǎn)P為邊DC的中點(diǎn)時(shí),求EC的長(zhǎng);

2)如圖2,當(dāng)∠CPE30°,求ECAF的長(zhǎng);(3)如圖2,在(2)條件下,求四邊形EPHF的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案