【題目】如果一個(gè)圓上所有的點(diǎn)都在一個(gè)角的內(nèi)部或邊上,那么稱這個(gè)圓為該角的角內(nèi)圓.特別地,當(dāng)這個(gè)圓與角的至少一邊相切時(shí),稱這個(gè)圓為該角的角內(nèi)相切圓.在平面直角坐標(biāo)系xOy中,點(diǎn)E,F分別在x軸的正半軸和y軸的正半軸上.
(1)分別以點(diǎn)A(1,0),B(1,1),C(3,2)為圓心,1為半徑作圓,得到⊙A,⊙B和⊙C,其中是∠EOF的角內(nèi)圓的是 ;
(2)如果以點(diǎn)D(t,2)為圓心,以1為半徑的⊙D為∠EOF的角內(nèi)圓,且與直線y=x有公共點(diǎn),求t的取值范圍;
(3)點(diǎn)M在第一象限內(nèi),如果存在一個(gè)半徑為1且過點(diǎn)P(2,2)的圓為∠EMO的角內(nèi)相切圓,直接寫出∠EOM的取值范圍.
【答案】(1)⊙B,⊙C;(2)1≤t≤2+;(3)60°≤∠EOM<90°
【解析】
(1)畫出圖象,根據(jù)角內(nèi)相切圓的定義判斷即可.
(2)求出兩種特殊位置時(shí)t的值即可判斷.
(3)如圖3中,連接OP,OM.首先求出∠POE,根據(jù)圖象可知當(dāng)射線OM在∠POF的內(nèi)部(包括射線OP,不包括射線OF)時(shí),存在一個(gè)半徑為1且過點(diǎn)P(2,2)的圓為∠EMO的角內(nèi)相切圓.
(1)如圖1中,觀察圖象可知,⊙B和⊙C,其中是∠EOF的角內(nèi)圓.
故答案為:⊙B,⊙C.
(2)解:如圖,
當(dāng)⊙D1與y軸相切時(shí),設(shè)切點(diǎn)為M,則MD1=1,可得t1=1.
當(dāng)⊙D2與y=x相切時(shí),設(shè)切點(diǎn)為H,連接HD2,設(shè)直線y=x與直線y=2交于點(diǎn)K,則△HKD2,△MOK都是等腰直角三角形,
∵KH=HD2=1,
∴KD2=,
∵OM=MK=2,
∴MD2=MK+KD2=2+
可得t2=2+,
觀察圖象可知,滿足條件的t的取值范圍是1≤t≤2+.
(3)如圖3中,連接OP,OM.
∵P(2,2),
∴tan∠POE==,
∴∠POE=60°,
觀察圖象可知當(dāng)射線OM在∠POF的內(nèi)部(包括射線OP,不包括射線OF)時(shí),存在一個(gè)半徑為1且過點(diǎn)P(2,2)的圓為∠EMO的角內(nèi)相切圓,
∴60°≤∠EOM<90°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2020年,由于“疫情”的原因,學(xué)校未能準(zhǔn)時(shí)開學(xué),某中學(xué)為了了解學(xué)生在家“課間”活動(dòng)情況,在七、八、九年級(jí)的學(xué)生中,分別抽取了相同數(shù)量的學(xué)生對(duì)“你最喜歡的運(yùn)動(dòng)項(xiàng)目”在線進(jìn)行調(diào)查(每人只能選一項(xiàng)),調(diào)查結(jié)果的部分?jǐn)?shù)據(jù)如下表(圖)所示,其中七年級(jí)最喜歡跳繩的人數(shù)比八年級(jí)多5人,九年級(jí)最喜歡排球的人數(shù)為10人.
七年級(jí)學(xué)生最喜歡的運(yùn)動(dòng)項(xiàng)目人數(shù)統(tǒng)計(jì)表
項(xiàng)目 | 排球 | 籃球 | 踢毽 | 跳繩 | 其他 |
人數(shù)(人) | 7 | 8 | 14 | 6 |
請(qǐng)根據(jù)以上統(tǒng)計(jì)表(圖)解答下列問題:
(1)本次調(diào)查共抽取的人數(shù)為 人;
(2)請(qǐng)直接補(bǔ)全統(tǒng)計(jì)表和統(tǒng)計(jì)圖;
(3)根據(jù)抽樣調(diào)查的結(jié)果,請(qǐng)你估計(jì)該校1500名學(xué)生中有多少名學(xué)生最喜歡踢毽子?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊△ABC,作它的外接圓⊙O,連接AO并延長(zhǎng)交⊙O于點(diǎn)D,交BC于點(diǎn)E,過點(diǎn)D作DF∥BC,交AC的延長(zhǎng)線于點(diǎn)F.
(1)依題意補(bǔ)全圖形并證明:DF與⊙O相切;
(2)若AB=6,求CF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知拋物線y=ax2+bx﹣1交y軸于點(diǎn)P.
(1)過點(diǎn)P作與x軸平行的直線,交拋物線于點(diǎn)Q,PQ=4,求的值;
(2)橫縱坐標(biāo)都是整數(shù)的點(diǎn)叫做整點(diǎn).在(1)的條件下,記拋物線與x軸所圍成的封閉區(qū)域(不含邊界)為W.若區(qū)域W內(nèi)恰有4個(gè)整點(diǎn),結(jié)合函數(shù)圖象,求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】居民人均可支配收入、居民人均消費(fèi)總支出和恩格爾系數(shù)都是反映居民生活水平的指標(biāo),其中恩格爾系數(shù)指居民家庭中食品支出占消費(fèi)總支出的比重,恩格爾系數(shù)越小,說明食品支出占消費(fèi)總支出比重越低,居民家庭越富裕,反之越貧窮.
下面是根據(jù)從權(quán)威機(jī)構(gòu)獲得的部分?jǐn)?shù)據(jù)繪制的統(tǒng)計(jì)圖:
根據(jù)以上信息,回答下列問題:
(1)2019年中國(guó)城鄉(xiāng)居民恩格爾系數(shù)m約為 (精確到0.1%);
(2)2019年居民人均消費(fèi)總支出n約為 萬元(精確到千位);
(3)下面的推斷合理的是 .
①2015﹣2019年中國(guó)城鄉(xiāng)居民人均可支配收入和人均消費(fèi)總支出均呈逐年上升的趨勢(shì),說明中國(guó)居民生活水平逐步提高;
②2015﹣2019年中國(guó)城鄉(xiāng)居民恩格爾系數(shù)呈現(xiàn)下降趨勢(shì),說明中國(guó)居民家庭富裕程度越來越高.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】先進(jìn)制造業(yè)城市發(fā)展指數(shù)是反映一個(gè)城市先進(jìn)制造水平的綜合指數(shù).對(duì)2019年我國(guó)先進(jìn)制造業(yè)城市發(fā)展指數(shù)得分排名位居前列的30個(gè)城市的有關(guān)數(shù)據(jù)進(jìn)行收集、整理、描述和分析.下面給出了部分信息:
a.先進(jìn)制造業(yè)城市發(fā)展指數(shù)得分的頻數(shù)分布直方圖(數(shù)據(jù)分成6組:):
b.先進(jìn)制造業(yè)城市發(fā)展指數(shù)得分在這一組的是:71.1 75.7 79.9
c.30個(gè)城市的2019年快遞業(yè)務(wù)量累計(jì)和先進(jìn)制造業(yè)城市發(fā)展指數(shù)得分情況統(tǒng)計(jì)圖:
d.北京的先進(jìn)制造業(yè)城市發(fā)展指數(shù)得分為79.9.
根據(jù)以上信息,回答下列問題:
(1)在這30個(gè)城市中,北京的先進(jìn)制造業(yè)城市發(fā)展指數(shù)排名第;
(2)在30個(gè)城市的快遞業(yè)務(wù)量累計(jì)和先進(jìn)制造業(yè)城市發(fā)展指數(shù)得分情況統(tǒng)計(jì)圖中,包括北京在內(nèi)的少數(shù)幾個(gè)城市所對(duì)應(yīng)的點(diǎn)位于虛線的上方.請(qǐng)?jiān)趫D中用“○”圈出代表北京的點(diǎn);
(3)在這30個(gè)城市中,先進(jìn)制造業(yè)城市發(fā)展指數(shù)得分高于北京的城市的快遞業(yè)務(wù)量累計(jì)的最小值約為_______億件.(結(jié)果保留整數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個(gè)不透明的布袋中裝有標(biāo)著數(shù)字2,3,4,5的4個(gè)小球,這4個(gè)小球的材質(zhì)、大小和形狀完全相同,現(xiàn)從中隨機(jī)摸出兩個(gè)小球,這兩個(gè)小球上的數(shù)字之積大于9的概率為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)設(shè)計(jì)了一款工藝品,每件的成本是50元,為了合理定價(jià),投放市場(chǎng)進(jìn)行試銷.據(jù)市場(chǎng)調(diào)查,銷售單價(jià)是100元時(shí),每天的銷售量是50件,而銷售單價(jià)每降低1元,每天就可多售出5件,但要求銷售單價(jià)不得低于成本.
求出每天的銷售利潤(rùn)元與銷售單價(jià)元之間的函數(shù)關(guān)系式;
求出銷售單價(jià)為多少元時(shí),每天的銷售利潤(rùn)最大?最大利潤(rùn)是多少?
如果該企業(yè)要使每天的銷售利潤(rùn)不低于4000元,且每天的總成本不超過7000元,那么銷售單價(jià)應(yīng)控制在什么范圍內(nèi)?每天的總成本每件的成本每天的銷售量
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在抗擊新冠肺炎疫情期間,市場(chǎng)上防護(hù)口罩出現(xiàn)熱銷.某藥店用元購(gòu)進(jìn)甲,乙兩種不同型號(hào)的口罩共個(gè)進(jìn)行銷售,已知購(gòu)進(jìn)甲種口罩與乙種口罩的費(fèi)用相同,購(gòu)進(jìn)甲種口罩單價(jià)是乙種口罩單價(jià)的倍.
求購(gòu)進(jìn)的甲,乙兩種口罩的單價(jià)各是多少?
若甲,乙兩種口罩的進(jìn)價(jià)不變,該藥店計(jì)劃用不超過元的資金再次購(gòu)進(jìn)甲,乙兩種口罩共個(gè),求甲種口罩最多能購(gòu)進(jìn)多少個(gè)?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com