【題目】居民人均可支配收入、居民人均消費總支出和恩格爾系數(shù)都是反映居民生活水平的指標,其中恩格爾系數(shù)指居民家庭中食品支出占消費總支出的比重,恩格爾系數(shù)越小,說明食品支出占消費總支出比重越低,居民家庭越富裕,反之越貧窮.

下面是根據(jù)從權(quán)威機構(gòu)獲得的部分數(shù)據(jù)繪制的統(tǒng)計圖:

根據(jù)以上信息,回答下列問題:

12019年中國城鄉(xiāng)居民恩格爾系數(shù)m約為   (精確到0.1%);

22019年居民人均消費總支出n約為   萬元(精確到千位);

3)下面的推斷合理的是   

20152019年中國城鄉(xiāng)居民人均可支配收入和人均消費總支出均呈逐年上升的趨勢,說明中國居民生活水平逐步提高;

20152019年中國城鄉(xiāng)居民恩格爾系數(shù)呈現(xiàn)下降趨勢,說明中國居民家庭富裕程度越來越高.

【答案】(1)28.3%;(2)2.1;(3)①②.

【解析】

1)根據(jù)扇形統(tǒng)計圖中食品所占的圓心角的度數(shù)÷360°即可得到結(jié)論;

2)根據(jù)食品支出占消費總支出的百分比×0.6即可得到結(jié)論;

3)由折線統(tǒng)計圖和條形統(tǒng)計圖中的信息監(jiān)控得到結(jié)論.

解:(12019年中國城鄉(xiāng)居民恩格爾系數(shù)m約為×100%≈28.3%,

故答案為:28.3%

22019年居民人均消費總支出n約為0.6÷28.3%≈2.1(萬元);

3)由條形統(tǒng)計圖可以看出20152019年中國城鄉(xiāng)居民人均可支配收入和人均消費總支出均呈逐年上升的趨勢,說明中國居民生活水平逐步提高;

由折線統(tǒng)計圖可知20152019年中國城鄉(xiāng)居民恩格爾系數(shù)呈現(xiàn)下降趨勢,說明中國居民家庭富裕程度越來越高.

故推斷合理的是①②;

故答案為:(128.3%;(22.1;(3)①②.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校舉辦球賽,分為若干組,其中第一組有A,B,C,D,E五個隊.這五個隊要進行單循環(huán)賽,即每兩個隊之間要進行一場比賽,每場比賽采用三局兩勝制,即三局中勝兩局就獲勝.每場比賽勝負雙方根據(jù)比分會獲得相應(yīng)的積分,積分均為正整數(shù).這五個隊完成所有比賽后得到如下的積分表.

根據(jù)上表回答下列問題:

1)第一組一共進行了   場比賽,A隊的獲勝場數(shù)x   ;

2)當(dāng)B隊的總積分y=6時,上表中m處應(yīng)填   ,n處應(yīng)填   

3)寫出C隊總積分p的所有可能值為:   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于平面直角坐標系xOy中的點P,Q,給出如下定義:若P,Q為某個三角形的頂點,且邊PQ上的高h,滿足hPQ,則稱該三角形為點P,Q生成三角形

1)已知點A40);

①若以線段OA為底的某等腰三角形恰好是點OA生成三角形,求該三角形的腰長;

②若RtABC是點A,B生成三角形,且點Bx軸上,點C在直線y2x5上,則點B的坐標為   ;

2)⊙T的圓心為點T2,0),半徑為2,點M的坐標為(2,6),N為直線yx+4上一點,若存在RtMND,是點M,N生成三角形,且邊ND與⊙T有公共點,直接寫出點N的橫坐標的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系xOy中,反比例函數(shù)y的圖象與一次函數(shù)y2x1的圖象交于A、B兩點,已知Am,﹣3).

1)求k及點B的坐標;

2)若點Cy軸上一點,且SABC5,直接寫出點C的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面上存在點P、點M與線段AB.若線段AB上存在一點Q,使得點M在以PQ為直徑的圓上,則稱點M為點P與線段AB的共圓點.

已知點P0,1),點A(﹣2,﹣1),點B2,﹣1).

1)在點O0,0),C(﹣21),D3,0)中,可以成為點P與線段AB的共圓點的是   ;

2)點Kx軸上一點,若點K為點P與線段AB的共圓點,請求出點K橫坐標xK的取值范圍;

3)已知點Mm,﹣1),若直線yx+3上存在點P與線段AM的共圓點,請直接寫出m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果一個圓上所有的點都在一個角的內(nèi)部或邊上,那么稱這個圓為該角的角內(nèi)圓.特別地,當(dāng)這個圓與角的至少一邊相切時,稱這個圓為該角的角內(nèi)相切圓.在平面直角坐標系xOy中,點E,F分別在x軸的正半軸和y軸的正半軸上.

1)分別以點A1,0),B11),C3,2)為圓心,1為半徑作圓,得到⊙A,⊙B和⊙C,其中是∠EOF的角內(nèi)圓的是   ;

2)如果以點Dt,2)為圓心,以1為半徑的⊙D為∠EOF的角內(nèi)圓,且與直線yx有公共點,求t的取值范圍;

3)點M在第一象限內(nèi),如果存在一個半徑為1且過點P2,2)的圓為EMO的角內(nèi)相切圓,直接寫出EOM的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有這樣一個問題:探究函數(shù)的圖象與性質(zhì)并解決問題.

小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,對問題進行了探究.

下面是小明的探究過程,請補充完整:

1)函數(shù)的自變量的取值范圍是 ;

2)取幾組的對應(yīng)值,填寫在下表中.

td style="width:6%; border-top-style:solid; border-top-width:0.75pt; border-right-style:solid; border-right-width:0.75pt; border-left-style:solid; border-left-width:0.75pt; padding:3.38pt 5.62pt; vertical-align:middle">

1.5

0

1

1.2

1.25

2.75

2.8

3

4

5

6

8

1

2

3

6

7.5

8

8

7.5

6

3

1.5

1

的值為_____________;

3)如下圖,在平面直角坐標系中,描出補全后的表中各組對應(yīng)值所對應(yīng)的點,并畫出該函數(shù)的圖象;

4)獲得性質(zhì),解決問題:

①通過觀察、分析、證明,可知函數(shù)的圖象是軸對稱圖形,它的對稱軸是____________;

②過點作直線軸,與函數(shù)的圖象交于點(在點的左側(cè)),則的值為____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小雪和小松分別從家和圖書館出發(fā),沿同一條筆直的馬路相向而行.小雪開始跑步,中途在某地改為步行,且步行的速度為跑步速度的一半,小雪先出發(fā)5分鐘后,小松才騎自行車勻速回家.小雪到達圖書館恰好用了35分鐘.兩人之間的距離ym)與小雪離開出發(fā)地的時間xmin)之間的函數(shù)圖象如圖所示,則當(dāng)小松剛到家時,小雪離圖書館的距離為____米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:在平面直角坐標系中,某個函數(shù)圖象上任意兩點的坐標分別為(x1,y1),(x2,y2),且x1x2,d=|y1-y2|.將這個函數(shù)圖象在直線y=y1下方部分沿直線y=y1翻折,并將其向上平移d個單位,將這部分圖象與原函數(shù)圖象剩余部分的圖象組成的新圖象記為G,圖象G對應(yīng)的函數(shù)叫做這個函數(shù)的伴隨函數(shù).例如:點A1,0)、B2,1)在一次函數(shù)y=x-1的圖象上,則它的伴隨函數(shù)為

1)點A、B在直線y=-2x上,點A在第二象限,點Bx軸上.當(dāng)d=2時,求函數(shù)y=-2x的伴隨函數(shù)所對應(yīng)的函數(shù)表達式.

2)二次函數(shù)y=x2-2x-3的圖象交x軸負半軸交于點A,點B在拋物線上,設(shè)點B的橫坐標為m

①當(dāng)d=0時,求該拋物線的伴隨函數(shù)的圖象G與直線y=4在第一象限的交點坐標;

②若直線y=2與該拋物線的伴隨函數(shù)的圖象G有四個交點,直接寫出m的取值范圍.

3)拋物線y=x2-2nx+n2-n-1y軸交于點A,點B在點A的左側(cè)拋物線上,且d=1,當(dāng)該拋物線的伴隨函數(shù)的圖象G上的點到x軸距離的最小值為1時,直接寫出n的值.

查看答案和解析>>

同步練習(xí)冊答案