(2007•臨夏州)為籌備班級的初中畢業(yè)聯(lián)歡會,班長對全班學生愛吃哪幾種水果作了民意調(diào)查.那么最終決定買什么水果,最值得關(guān)注的應(yīng)該是統(tǒng)計調(diào)查數(shù)據(jù)的    .(中位數(shù),平均數(shù),眾數(shù))
【答案】分析:班長最值得關(guān)注的應(yīng)該是哪種水果愛吃的人數(shù)最多,即眾數(shù).
解答:解:由于眾數(shù)是數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù),故班長最值得關(guān)注的應(yīng)該是統(tǒng)計調(diào)查數(shù)據(jù)的眾數(shù).
故填眾數(shù).
點評:此題主要考查統(tǒng)計的有關(guān)知識,主要包括平均數(shù)、中位數(shù)、眾數(shù)的意義.反映數(shù)據(jù)集中程度的統(tǒng)計量有平均數(shù)、中位數(shù)、眾數(shù)等,各有局限性,因此要對統(tǒng)計量進行合理的選擇和恰當?shù)倪\用.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

(2007•臨夏州)3張撲克牌如圖(1)所示放在桌子上,小敏把其中一張旋轉(zhuǎn)180°后得到如圖(2)所示,則她所旋轉(zhuǎn)的牌從左數(shù)起是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2007•臨夏州)順次連結(jié)任意四邊形各邊中點所得到的四邊形一定是
平行四邊形
平行四邊形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2007•臨夏州)[(1)-(3),10分]如圖,已知等邊△ABC和點P,設(shè)點P到△ABC三邊AB、AC、BC(或其延長線)的距離分別為h1、h2、h3,△ABC的高為h.
在圖(1)中,點P是邊BC的中點,此時h3=0,可得結(jié)論:h1+h2+h3=h.
在圖(2)--(5)中,點P分別在線段MC上、MC延長線上、△ABC內(nèi)、△ABC外.
(1)請?zhí)骄浚簣D(2)--(5)中,h1、h2、h3、h之間的關(guān)系;(直接寫出結(jié)論)
(2)證明圖(2)所得結(jié)論;
(3)證明圖(4)所得結(jié)論.
(4)在圖(6)中,若四邊形RBCS是等腰梯形,∠B=∠C=60°,RS=n,BC=m,點P在梯形內(nèi),且點P到四邊BR、RS、SC、CB的距離分別是h1、h2、h3、h4,橋形的高為h,則h1、h2、h3、h4、h之間的關(guān)系為:
m(h1+h2+h3)-n(h1+h3-h4)=(m+n)h
m(h1+h2+h3)-n(h1+h3-h4)=(m+n)h
;圖(4)與圖(6)中的等式有何關(guān)系?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2007•臨夏州)在平面幾何中,我們可以證明:周長一定的多邊形中,正多邊形面積最大.使用上邊的事實,解答下面的問題:
用長度分別為2、3、4、5、6(單位:cm)的五根木棒圍成一個三角形(允許連接,但不允許折斷),求能夠圍成的三角形的最大面積.

查看答案和解析>>

科目:初中數(shù)學 來源:2007年全國中考數(shù)學試題匯編《二次函數(shù)》(09)(解析版) 題型:解答題

(2007•臨夏州)在直角坐標系中,⊙A的半徑為4,圓心A的坐標為(2,0),⊙A與x軸交于E、F兩點,與y軸交于C、D兩點,過點C作⊙A的切線BC,交x軸于點B.
(1)求直線CB的解析式;
(2)若拋物線y=ax2+bx+c的頂點在直線BC上,與x軸的交點恰為點E、F,求該拋物線的解析式;
(3)試判斷點C是否在拋物線上;
(4)在拋物線上是否存在三個點,由它構(gòu)成的三角形與△AOC相似?直接寫出兩組這樣的點.

查看答案和解析>>

同步練習冊答案