解:在菱形ABCD中,AB=BC=CD=DA
∵AE⊥BC
∴∠AEB=90°
在直角三角形ABE中,sinB=
又sinB=
設(shè)AE=5x(x>0),則AB=13x
根據(jù)勾股定理,得
BE=
=12x
∵BE+EC=BC,EC=1
∴12x+1=13x
解得x=1
∴AB=DA=CD=13,AE=5
∴AE+EC+CD+DA=5+1+13+13=32.
即四邊形AECD的周長是32.
分析:本題的關(guān)鍵是求出BE和AE的長,根據(jù)sinB的值,我們可以在直角三角形ABE中,用未知數(shù)設(shè)出AE,AB的長,進而表示出BE的長.然后根據(jù)BE+1=BC,求出未知數(shù)的值,也就求出了AE,BE,AB的長,這樣就能求出四邊形AECD的周長了.
點評:此題考查綜合應(yīng)用解直角三角形、菱形的性質(zhì),也考查邏輯推理能力和運算能力.