【題目】設(shè)有理數(shù)a、b、c滿足a>b>c(ac<0),且|c|<|b|<|a|,則|x﹣|+|x﹣|+|x+|的最小值是( 。
A.B.C.D.
【答案】C
【解析】
根據(jù)ac<0可知a,c異號(hào),再根據(jù)a>b>c,以及|c|<|b|<|a|,即可確定a,﹣a,b,﹣b,c,﹣c在數(shù)軸上的位置,而|x﹣|+|x﹣|+|x+|表示到,,﹣三點(diǎn)的距離的和,根據(jù)數(shù)軸即可確定.
解:∵ac<0,
∴a,c異號(hào),
∵a>b>c,
∴a>0,c<0,
又∵|c|<|b|<|a|,
∴﹣a<﹣b<c<0<﹣c<b<a,
又∵|x﹣|+|x﹣|+|x+|表示到,,﹣,﹣三點(diǎn)的距離的和,
當(dāng)x在時(shí)距離最小,
即|x﹣|+|x﹣|+|x+|最小,最小值是與﹣之間的距離,即 .
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,對(duì)角線AC、BD交于點(diǎn)O,BE平分∠ABC交AC于點(diǎn)F,交AD于點(diǎn)E,且∠DBF=15°,求證:(1)AO=AE; (2)∠FEO的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,D為△ABC內(nèi)一點(diǎn),且AD =BD,若∠ACD=∠DAB=45°,AC=5,則S△ABC=_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】聯(lián)合國規(guī)定每年的6月5日是“世界環(huán)境日”,為配合今年的“世界環(huán)境日”宣傳活動(dòng),某實(shí)驗(yàn)中學(xué)課外活動(dòng)小組對(duì)全校師生開展了“愛好環(huán)境,從我做起”為主題的問卷調(diào)查,并將調(diào)查結(jié)果分析整理后完成了下面的兩個(gè)統(tǒng)計(jì)圖.
其中:
A.能將垃圾放到規(guī)定的地方,而且還會(huì)考慮垃圾的分類;
B.能將垃圾放到規(guī)定的地方,但不會(huì)考慮垃圾的分類;
C.偶爾將垃圾放在規(guī)定的地方;
D.隨手亂扔垃圾.
根據(jù)以上信息回答下列問題:
(1)該校課外活動(dòng)小組共調(diào)查了多少人?并補(bǔ)全條形統(tǒng)計(jì)圖;
(2)如果該校共有師生3060人,那么隨手亂扔垃圾的約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一副三角板按圖 1 所示的位置擺放,將△DEF 繞點(diǎn) A(F)逆時(shí)針旋轉(zhuǎn) 60°后(圖 2), 測(cè)得 CG=8cm,則兩個(gè)三角形重疊(陰影)部分的面積為()
A. 16+16 cm2
B. 16+ cm2
C. 16+ cm2
D. 48cm2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)原有管理人員與營(yíng)銷人員的人數(shù)之比為3∶2,總?cè)藬?shù)為150,為了擴(kuò)大市場(chǎng),從管理人員中抽調(diào)部分人員參加營(yíng)銷工作,就能使?fàn)I銷人員是管理人員的2倍,請(qǐng)問應(yīng)從管理人員中抽調(diào)多少人參加營(yíng)銷工作?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,P 為△ABC 內(nèi)一點(diǎn),連接 PA、PB、PC,在△PAB、△PBC 和△PAC 中,如果存在一個(gè)三角形與△ABC 相似,那么就稱 P 為△ABC 的自相似點(diǎn).
(1)如圖 2,已知 Rt△ABC 中,∠ACB=90°,CD 是 AB 上的中線,過點(diǎn) B 作 BE⊥CD,垂足為 E,試說明 E 是△ABC 的自相似點(diǎn).
(2)如圖 3,在△ABC 中,∠A<∠B<∠C.若△ABC 的三個(gè)內(nèi)角平分線的交 點(diǎn) P 是該 三角形的自相似點(diǎn),求該三角形三個(gè)內(nèi)角的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰△ABC中,AB=AC,∠ACB=72°,
(1)若BD⊥AC于D,求∠ABD的度數(shù);
(2)若CE平分∠ACB,求證:AE=BC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,cm, cm,在中,,cm,cm.EF在BC上,保持不動(dòng),并將以1cm/s的速度向點(diǎn)C運(yùn)動(dòng),移動(dòng)開始前點(diǎn)F與點(diǎn)B重合,當(dāng)點(diǎn)E與點(diǎn)C重合時(shí),停止移動(dòng).邊DE與AB相交于點(diǎn)G,連接FG,設(shè)移動(dòng)時(shí)間為t(s).
(1)從移動(dòng)開始到停止,所用時(shí)間為________s;
(2)當(dāng)DE平分AB時(shí),求t的值;
(3)當(dāng)為等腰三角形時(shí),求t的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com