【題目】已知某校有一塊四邊形空地ABCD如圖,現計劃在該空地上種草皮,經測量∠A=90°,AB=3cm,BC=12cm,CD=13cm,DA=4cm.若種每平方米草皮需100元,問需投入多少元?
【答案】解:∵∠A=90°,AB=3cm,DA=4cm,
∴DB= =5(cm),
∵BC=12cm,CD=13cm,
∴BD2+BC2=DC2,
∴△DBC是直角三角形,
∴S△ABD+S△DBC= ×3×4+ ×5×12=36(m2),
∴需投入總資金為:100×36=3600(元)
【解析】根據勾股定理得出BD的長,再利用勾股定理的逆定理證明△DBC是直角三角形,進而求出總的面積求出答案即可。
【考點精析】解答此題的關鍵在于理解三角形的面積的相關知識,掌握三角形的面積=1/2×底×高,以及對勾股定理的概念的理解,了解直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2.
科目:初中數學 來源: 題型:
【題目】小莉的爸爸買了某演唱會的一張門票,她和哥哥兩人都很想去觀看,可門票只有一張,讀九年級的哥哥想了一個辦法,拿了八張撲克牌,將數字為1,2,3,5的四張牌給小莉,將數字為4,6,7,8的四張牌留給自己,并按如下游戲規(guī)則進行:小莉和哥哥從各自的四張牌中隨機抽出一張,然后將抽出的兩張牌數字相加,如果和為偶數,則小莉去;如果和為奇數,則哥哥去.
(1)請用樹狀圖或列表的方法表示出兩張牌數字相加和的所有可能出現的結果;
(2)哥哥設計的游戲規(guī)則公平嗎?為什么?若不公平,請設計一種公平的游戲規(guī)則.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀下面材料,并解答問題.
材料:將分式拆分成一個整式與一個分式(分子為整數)的和的形式.
解:由分母為﹣x2+1,可設﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b則﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b=﹣x4﹣ax2+x2+a+b=﹣x4﹣(a﹣1)x2+(a+b)
∵對應任意x,上述等式均成立,∴,∴a=2,b=1
∴==+=x2+2+這樣,分式被拆分成了一個整式x2+2與一個分式的和.
解答:
(1)將分式 拆分成一個整式與一個分式(分子為整數)的和的形式.
(2)試說明的最小值為8.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC在直角坐標系中,
(1)請寫出△ABC各點的坐標。
(2)求出S△ABC
(3)若把△ABC向上平移2個單位,再向右平移2個單位得△A′B′C′,在圖中畫出△ABC變化位置,并寫出A′、B′、C′的坐標。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com